Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Captures First Images of Aftermath of Possible Asteroid Collision

15.10.2010
NASA's Hubble Space Telescope has captured the first snapshots of a suspected asteroid collision. The images show a bizarre X-shaped object at the head of a comet-like trail of material.

In January, astronomers began using Hubble to track the object for five months. They thought they had witnessed a fresh asteroid collision, but were surprised to learn the collision occurred in early 2009.

"We expected the debris field to expand dramatically, like shrapnel flying from a hand grenade," said astronomer David Jewitt of the University of California in Los Angeles, who is a leader of the Hubble observations. "But what happened was quite the opposite. We found that the object is expanding very, very slowly."

The peculiar object, dubbed P/2010 A2, was found cruising around the asteroid belt, a reservoir of millions of rocky bodies between the orbits of Mars and Jupiter. It is estimated modest-sized asteroids smash into each other about once a year. When the objects collide, they inject dust into interplanetary space. But until now, astronomers have relied on models to make predictions about the frequency of these collisions and the amount of dust produced.

Catching colliding asteroids is difficult because large impacts are rare while small ones, such as the one that produced P/2010 A2, are exceedingly faint. The two asteroids that make up P/2010 A2 were unknown before the collision because they were too faint to be noticed. The collision itself was unobservable because of the asteroids' position in relation to the sun. About 10 or 11 months later, in January 2010, the Lincoln Near-Earth Research (LINEAR) Program Sky Survey spotted the comet-like tail produced by the collision. But only Hubble discerned the X pattern, offering unequivocal evidence that something stranger than a comet outgassing had occurred.

Although the Hubble images give compelling evidence for an asteroid collision, Jewitt says he still does not have enough information to rule out other explanations for the peculiar object. In one such scenario, a small asteroid's rotation increases from solar radiation and loses mass,

forming the comet-like tail.

"These observations are important because we need to know where the dust in the solar system comes from, and how much of it comes from colliding asteroids as opposed to 'outgassing' comets," Jewitt said. "We also can apply this knowledge to the dusty debris disks around other stars, because these are thought to be produced by collisions between unseen bodies in the disks. Knowing how the dust was produced will yield clues about those invisible bodies."

The Hubble images, taken from January to May 2010 with the telescope's Wide Field Camera 3, reveal a point-like object about 400 feet wide, with a long, flowing dust tail behind a never-before-seen X pattern. Particle sizes in the tail are estimated to vary from about 1/25th of an inch to an inch in diameter.

The 400-foot-wide object in the Hubble image is the remnant of a slightly larger precursor body. Astronomers think a smaller rock, perhaps 10 to 15 feet wide, slammed into the larger one. The pair probably collided at high speed, about 11,000 mph, which smashed and vaporized the small asteroid and stripped material from the larger one. Jewitt estimates that the violent encounter happened in February or March 2009 and was as powerful as the

detonation of a small atomic bomb.

Sunlight radiation then swept the debris behind the remnant asteroid, forming a comet-like tail. The tail contains enough dust to make a ball 65 feet wide, most of it blown out of the bigger body by the impact-caused explosion. The science journal Nature will publish the findings in the Oct. 14 issue.

"Once again, Hubble has revealed unexpected phenomena occurring in our celestial 'back yard," said Eric Smith, Hubble Program scientist at NASA Headquarters in Washington. "Though it's often Hubble's deep observations of the universe or beautiful images of glowing nebulae in our galaxy that make headlines, observations like this of objects in our own solar system remind us how much exploration we still have to do locally."

Astronomers do not have a good explanation for the X shape. The crisscrossed filaments at the head of the tail suggest that the colliding asteroids were not perfectly symmetrical. Material ejected from the impact, therefore, did not make a symmetrical pattern, a bit like the ragged splash made by throwing a rock into a lake. Larger particles in the X disperse very slowly and give this structure its longevity.

Astronomers plan to use Hubble again next year to view the object. Jewitt and his colleagues hope to see how far the dust has been swept back by the Sun's radiation and how the mysterious X-shaped structure has evolved.

For images, movies, and more information about asteroid encounter P/2010 A2, visit:

http://hubblesite.org/news/2010/34
http://www.nasa.gov/hubble
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Donna Weaver | Newswise Science News
Further information:
http://www.nasa.gov/hubble
http://hubblesite.org/news/2010/34
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>