Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's Fermi Telescope Probes Dozens of Pulsars

With NASA's Fermi Gamma-ray Space Telescope, astronomers now are getting their best look at those whirling stellar cinders known as pulsars.

In two studies published in the July 2 edition of Science Express, international teams have analyzed gamma-rays from two dozen pulsars, including 16 discovered by Fermi. Fermi is the first spacecraft able to identify pulsars by their gamma-ray emission alone.

A pulsar is the rapidly spinning and highly magnetized core left behind when a massive star explodes. Most of the 1,800 cataloged pulsars were found through their periodic radio emissions. Astronomers believe these pulses are caused by narrow, lighthouse-like radio beams emanating from the pulsar's magnetic poles.

"Fermi has truly unprecedented power for discovering and studying gamma-ray pulsars," said Paul Ray of the Naval Research Laboratory in Washington. "Since the demise of the Compton Gamma Ray Observatory a decade ago, we've wondered about the nature of unidentified gamma-ray sources it detected in our galaxy. These studies from Fermi lift the veil on many of them."

The Vela pulsar, which spins 11 times a second, is the brightest persistent source of gamma rays in the sky. Yet gamma rays -- the most energetic form of light -- are few and far between. Even Fermi's Large Area Telescope sees only about one gamma-ray photon from Vela every two minutes.

"That's about one photon for every thousand Vela rotations," said Marcus Ziegler, a member of the team reporting on the new pulsars at the University of California, Santa Cruz. "From the faintest pulsar we studied, we see only two gamma-ray photons a day."

Radio telescopes on Earth can detect a pulsar easily only if one of the narrow radio beams happens to swing our way. If not, the pulsar can remain hidden.

A pulsar's radio beams represent only a few parts per million of its total power, whereas its gamma rays account for 10 percent or more. Somehow, pulsars are able to accelerate particles to speeds near that of light. These particles emit a broad beam of gamma rays as they arc along curved magnetic field lines.

The new pulsars were discovered as part of a comprehensive search for periodic gamma-ray fluctuations using five months of Fermi Large Area Telescope data and new computational techniques.

"Before launch, some predicted Fermi might uncover a handful of new pulsars during its mission," Ziegler added. "To discover 16 in its first five months of operation is really beyond our wildest dreams."

Like spinning tops, pulsars slow down as they lose energy. Eventually, they spin too slowly to power their characteristic emissions and become undetectable.

But pair a slowed dormant pulsar with a normal star, and a stream of stellar matter from the companion can spill onto the pulsar and increase its spin. At rotation periods between 100 and 1,000 times a second, ancient pulsars can resume the activity of their youth. In the second study, Fermi scientists examined gamma rays from eight of these "born-again" pulsars, all of which were previously discovered at radio wavelengths.

"Before Fermi launched, it wasn't clear that pulsars with millisecond periods could emit gamma rays at all," said Lucas Guillemot at the Center for Nuclear Studies in Gradignan, near Bordeaux, France. "Now we know they do. It's also clear that, despite their differences, both normal and millisecond pulsars share similar mechanisms for emitting gamma rays."

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

Francis Reddy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>