Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Fermi Space Telescope Explores New Energy Extremes

11.01.2012
After more than three years in space, NASA's Fermi Gamma-ray Space Telescope is extending its view of the high-energy sky into a largely unexplored electromagnetic range. Today, the Fermi team announced its first census of energy sources in this new realm.

Fermi's Large Area Telescope (LAT) scans the entire sky every three hours, continually deepening its portrait of the sky in gamma rays, the most energetic form of light. While the energy of visible light falls between about 2 and 3 electron volts, the LAT detects gamma rays with energies ranging from 20 million to more than 300 billion electron volts (GeV).

At higher energies, gamma rays are rare. Above 10 GeV, even Fermi's LAT detects only one gamma ray every four months.

"Before Fermi, we knew of only four discrete sources above 10 GeV, all of them pulsars," said David Thompson, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Md. "With the LAT, we've found hundreds, and we're showing for the first time just how diverse the sky is at these high energies."

Any object producing gamma rays at these energies is undergoing extraordinary astrophysical processes. More than half of the 496 sources in the new census are active galaxies, where matter falling into a supermassive black hole powers jets that spray out particles at nearly the speed of light.

Only about 10 percent of the known sources lie within our own galaxy. They include rapidly rotating neutron stars called pulsars, the expanding debris from supernova explosions, and in a few cases, binary systems containing massive stars.

More than a third of the sources are completely unknown, having no identified counterpart detected in other parts of the spectrum. With the new catalog, astronomers will be able to compare the behavior of different sources across a wider span of gamma-ray energies for the first time.

Just as bright infrared sources may fade to invisibility in the ultraviolet, some of the gamma-ray sources above 1 GeV vanish completely when viewed at higher, or "harder," energies.

One example is the well-known radio galaxy NGC 1275, which is a bright, isolated source below 10 GeV. At higher energies it fades appreciably and another nearby source begins to appear. Above 100 GeV, NGC 1275 becomes undetectable by Fermi, while the new source, the radio galaxy IC 310, shines brightly.

The Fermi hard-source list is the product of an international team led by Pascal Fortin at the Ecole Polytechnique's Laboratoire Leprince-Ringuet in Palaiseau, France, and David Paneque at the Max Planck Institute for Physics in Munich.

The catalog serves as an important roadmap for ground-based facilities called Atmospheric Cherenkov Telescopes, which have amassed about 130 gamma-ray sources with energies above 100 GeV. They include the Major Atmospheric Gamma Imaging Cherenkov telescope (MAGIC) on La Palma in the Canary Islands, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in Arizona, and the High Energy Stereoscopic System (H.E.S.S.) in Namibia.

"Our catalog will have a significant impact on ground-based facilities' work by pointing them to the most likely places to find gamma-ray sources emitting above 100 GeV," Paneque said.

Compared to Fermi's LAT, these ground-based observatories have much smaller fields of view. They also make fewer observations because they cannot operate during daytime, bad weather or a full moon.

"As Fermi's exposure constantly improves our view of hard sources, ground-based telescopes are becoming more sensitive to lower-energy gamma rays, allowing us to bridge these two energy regimes," Fortin added.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership. Fermi is managed by Goddard. It was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov/mission_pages/GLAST/news/energy-extremes.html

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>