Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Dawn Sees Young Face on Giant Asteroid

05.11.2012
Like a Hollywood starlet constantly retouching her make-up, the giant asteroid Vesta is constantly stirring its outermost layer and presenting a young face.

Data from NASA's Dawn mission show that a common form of weathering, which occurs on many airless bodies in the inner solar system like the Moon, does not age Vesta’s outermost layer.


NASA/JPL-Caltech/UCLA/MPS/DLR/PSI/Brown

This image from NASA's Dawn spacecraft shows a close up of part of the rim around the crater Canuleia on the giant asteroid Vesta. Canuleia, about 6 miles (10 kilometers) in diameter, is the large crater at the bottom-left of this image. This close-up image illustrates the structure of the interior of the crater and complex details of the fresh rays across the soil of Vesta. The image was taken by Dawn's framing camera on Dec. 29, 2011, from an altitude of about 130 miles (210 kilometers).

Carbon-rich asteroids have also been splattering dark material on Vesta's surface over a long span of its history. The results are described in two papers reported on Nov. 1 in the journal Nature.

David Williams, an associate research professor in ASU’s School of Earth and Space Exploration, is a co-author of the Nature article on Vesta’s dark material, titled “Dark Material on Vesta: Delivering Carbonaceous Volatile-Rich Materials to Planetary Surfaces.”

“The dark material on Vesta has been a perplexing problem, one we first noticed as Dawn approached Vesta in the summer of 2011,” said Williams, a member of the science team task force investigating the dark material. “Through Dawn’s mission at Vesta, it became clear that the dark material was mostly derived from carbon-rich asteroids that impacted Vesta’s surface.”

Early pictures of Vesta showed a variety of dramatic light and dark splotches on its surface. These light and dark materials were unexpected and show Vesta has a brightness range that is among the largest observed on rocky bodies in our solar system.

“Most of the smaller dark material patches are associated with impact craters, forming dark rays of ejecta spreading outward,” Williams said. “There are also large regions of dark material, whose composition suggests they are derived from carbon-rich asteroids – perhaps from one or more large impacts early in Vesta’s history.”

Dawn scientists suspected early on that bright material is native to Vesta. One of their first theories for the dark material suggested it might come from the shock of high-speed impacts melting and darkening the underlying rocks or from recent volcanic activity.

An analysis of data from Dawn’s visible and infrared mapping spectrometer and the framing camera revealed that distribution of dark material is widespread and occurs in small spots and in diffuse deposits, without correlation to any particular underlying geology. The likely source of the dark material is now shown to be carbon-rich asteroids, which are also believed to have deposited hydrated minerals on Vesta.

To get the amount of darkening we now see on Vesta, Williams and colleagues said, scientists estimate about 300 dark asteroids with diameters between 0.6 to 6 miles (1 and 10 kilometers) likely hit Vesta during the last 3.5 billion years. This would have been enough to wrap Vesta in a blanket of mixed material 3 to 7 feet (1 to 2 meters) thick.

“This perpetual contamination of Vesta with material from elsewhere in the solar system is a dramatic example of an apparently common process that changes many solar system objects,” said Thomas McCord, lead author of the Nature paper, who worked with Williams on this study. “Earth likely got the ingredients for life – organics and water – this way.”

Launched in 2007, Dawn spent more than a year investigating Vesta. It departed in September 2012 and is currently on its way to the dwarf planet Ceres.

Williams is a participating scientist on NASA’s Dawn mission. JPL manages the Dawn mission for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Ala. The University of California at Los Angeles (UCLA) is responsible for overall Dawn mission science.

Orbital Sciences Corp., Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team. The California Institute of Technology, Pasadena, manages JPL for NASA.

For more information about Dawn, visit: http://www.nasa.gov/dawn and http://dawn.jpl.nasa.gov.

Skip Derra | Newswise Science News
Further information:
http://www.asu.edu
http://www.nasa.gov/dawn
http://dawn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>