Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Chandra adds to black hole birth announcement

18.11.2011
New details about the birth of a famous black hole that took place millions of years ago have been uncovered, thanks to a team of scientists who used data from NASA's Chandra X-ray Observatory as well as from radio, optical and other X-ray telescopes.

Over three decades ago, Stephen Hawking placed -- and eventually lost – a bet against the existence of a black hole in Cygnus X-1. Today, astronomers are confident the Cygnus X-1 system contains a black hole, and with these latest studies they have remarkably precise values of its mass, spin, and distance from Earth. With these key pieces of information, the history of the black hole has been reconstructed.

"This new information gives us strong clues about how the black hole was born, what it weighed and how fast it was spinning," said author Mark Reid of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "This is exciting because not much is known about the birth of black holes."

Reid led one of three papers -- all appearing in the November 10th issue of The Astrophysical Journal -- describing these new results on Cygnus X-1. The other papers were led by Jerome Orosz from San Diego State University and Lijun Gou, also from CfA.

Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole is in close orbit with a massive, blue companion star.

Using X-ray data from Chandra, the Rossi X-ray Timing Explorer, and the Advanced Satellite for Cosmology and Astrophysics, a team of scientists was able to determine the spin of Cygnus X-1 with unprecedented accuracy, showing that the black hole is spinning at very close to its maximum rate. Its event horizon -- the point of no return for material falling towards a black hole -- is spinning around more than 800 times a second.

An independent study that compared the evolutionary history of the companion star with theoretical models indicates that the black hole was born some 6 million years ago. In this relatively short time (in astronomical terms), the black hole could not have pulled in enough gas to ramp up its spin very much. The implication is that Cygnus X-1 was likely born spinning very quickly.

Using optical observations of the companion star and its motion around its unseen companion, the team made the most precise determination ever for the mass of Cygnus X-1, of 14.8 times the mass of the Sun. It was likely to have been almost this massive at birth, because of lack of time for it to grow appreciably.

"We now know that Cygnus X-1 is one of the most massive stellar black holes in the Galaxy," said Orosz. "And, it's spinning as fast as any black hole we've ever seen."

Knowledge of the mass, spin and charge gives a complete description of a black hole, according to the so-called "No Hair" theorem. This theory postulates that all other information aside from these parameters is lost for eternity behind the event horizon. The charge for an astronomical black hole is expected to be almost zero, so only the mass and spin are needed.

"It is amazing to me that we have a complete description of this asteroid-sized object that is thousands of light years away," said Gou. "This means astronomers have a more complete understanding of this black hole than any other in our Galaxy."

The team also announced that they have made the most accurate distance estimate yet of Cygnus X-1 using the National Radio Observatory's Very Long Baseline Array (VLBA). The new distance is about 6,070 light years from Earth. This accurate distance was a crucial ingredient for making the precise mass and spin determinations.

The radio observations also measured the motion of Cygnus X-1 through space, and this was combined with its measured velocity to give the three-dimensional velocity and position of the black hole.

This work showed that Cygnus X-1 is moving very slowly with respect to the Milky Way, implying it did not receive a large "kick" at birth. This supports an earlier conjecture that Cygnus X-1 was not born in a supernova, but instead may have resulted from the dark collapse of a progenitor star without an explosion. The progenitor of Cygnus X-1 was likely an extremely massive star, which initially had a mass greater than about 100 times the sun before losing it in a vigorous stellar wind.

In 1974, soon after Cygnus X-1 became a good candidate for a black hole, Stephen Hawking placed a bet with fellow astrophysicist Kip Thorne, a professor of theoretical physics at the California Institute of Technology, that Cygnus X-1 did not contain a black hole. This was treated as an insurance policy by Hawking, who had done a lot of work on black holes and general relativity.

By 1990, however, much more work on Cygnus X-1 had strengthened the evidence for it being a black hole. With the help of family, nurses, and friends, Hawking broke into Thorne's office, found the framed bet, and conceded.

"For forty years, Cygnus X-1 has been the iconic example of a black hole. However, despite Hawking's concession, I have never been completely convinced that it really does contain a black hole -- until now," said Thorne. "The data and modeling described in these three papers at last provide a completely definitive description of this binary system."

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu/

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>