Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowires can now be controlled

23.12.2008
Nanoscience researchers at Lund University in Sweden have shown that they can control the growth and crystal structure of nanowires down to the single atom level.

How this can be done is described in an article to appear in the January issue of Nature Nanotechnology, with Philippe Caroff and Kimberly Dick as the main authors.

According to Professor Lars Samuelson, this is a breakthrough both in the development of nanowire growth, and in the understanding of the fundamental materials physics processes involved.

- The results achieved here establish our position in this area of science and technology and give our ambitions an increased credibility, he says. The useful applications will not be far away.

It has been known for a long time that most semiconductor materials used in nanowires, including the very interesting material Indium Arsenide (InAs) studied here, are affected by irregularities in the layer-by-layer stacking sequence. These affect the electronic and optical properties in uncontrolled ways, and are therefore undesirable.

But now Philippe Caroff and Kimberly Dick have shown that it is possible to control these variations in great detail, which can be used for the development of new functions in nanowires.

It is now possible not only to fabricate perfect, defect-free nanowires, but also to switch freely between different crystal types along the length of a single nanowire, to produce a, so-called, superlattice, but still using only one chemical compound (InAs).

- Two of the key parameters needed to control the crystal structure are nanowire diameter and the temperature at which they are fabricated. But there are in total at least 10-12 different parameters that must be controlled when producing the nanowires, says Kimberly Dick.

Although this result has been demonstrated primarily for the binary compound InAs, it is believed that the mechanisms controlling the nanowire structure can be generally applied to related semiconductor materials used in nanotechnology.

With this technique it is also possible to grow highly regular nanowires with a perfect periodic facetted character.

Electron microscopy images show that the arrangement of atoms in the nanowire crystal exactly matches theoretical simulations. The electronic and optical properties of these wires have not been investigated yet but will be in the focus of theoretical as well as experimental studies.

The nanowires in this study had a typical diameter of 10-100 nanometers (one nanometer is one-millionth of one millimeter) and length of a few micrometers (one-thousandth of one millimeter).

The wires are produced by "baking" in an oven with a supply material in gas form, and grow from small microscopic gold "seeds". Kimberly Dick defended a PhD thesis last year containing many electron microscopy images of similar nanowires.

The researchers work within the Nanometer Structure Consortium (nmC) at Lund University to also find commercial applications for these nanowires in electronics and opto-electronics, such as for light-emission and solar cell applications.

Lars Samuelsson could be contacted at
e-mail: Lars.Samuelson@ftf.lth.se or +46-70 317 7679.
Pressofficer Mats Nygren Mats.Nygren@kansli.lth.se or +46-708 220187
The original article "Controlled polytypic and twin-plane superlattices in III-V nanowires" written by the Lund University scientists P Caroff, K A Dick, J Johansson, M E Messing, K Deppert and L Samuelson is available at www.nature.com/naturenanotechnology.

It is also reviewed in an article in Semiconductor Today: www.semiconductor-today.com/news_items/2008/DEC/LUNDUNIVERSITY_021208.htm

Mats Nygren | idw
Further information:
http://www.vr.se
http://www.lth.se/formedia/nanofigurer/
http://www.semiconductor-today.com/news_items/2008/DEC/LUNDUNIVERSITY_021208.htm

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>