Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire Synthesis Using A Gas Blocker In A Catalytic Thermal CVD

16.11.2009
Researchers of UiTM have invented a method to obstruct gas flow in the 2-furnace CVD system to synthesize ZnO nanowires.

Reported by Megawati Omar, Research Management Institute, UiTM

Researchers Mohd Zainizan Sahdan, Mohd Hafiz Mamat, Zuraida Khusaimi, Mohd Noor and Mohd Rusop Mahmud of the Faculty of Electrical Engineering and the Faculty of Applied Sciences, UiTM invented a method to obstruct gas flow in the 2-furnace CVD system to synthesize ZnO nanowires. ZnO nanowires can be synthesized using 2-furnace chemical vapour deposition (CVD) system but the gas flow is an important parameter for the nanowire synthesis as it is challenging to deposit ZnO nanowires it.

These researchers invented and placed a gas blocker at the end of the precursor furnace to obstruct the gas flow. Argon gas with ZnO vapour would hit the gas blocker and it would flow back to the opposite direction. Since Argon gas flowing from left was stronger, with a gold catalyst, it would repel to flow back onto the glass substrate. ZnO microball then would be formed and due to high energy, ZnO nanowires grew on the ZnO microball. High density of ZnO nanowires were synthesized by the gas blocker in the Catalytic Thermal CVD.

In the experiment, this gas blocker controlled a better flow of gas. ZnO nanowires on ZnO microballs were deposited on a glass substrate with high density and repeatability. The Ultra Violet-Visible (UV-Vis) spectrometer showed that ZnO nanowires had high absorption in the UV region which is an important criterion for solar cell applications. The photoluminescence study indicated that ZnO nanowires exhibited a strong excitation in the UV region which is suitable for UV laser diode applications.

Blocking the gas offers a better control of gas flow. Other that that, the fabricated ZnO nanowires has high UV absorption, thus the invention will be useful for light harvesting devices such as solar cells. As ZnO nanowires have strong UV emission, it is also good for light emitting devices such as laser diodes. Lastly, it offers strong impact on the physical and optical properties of ZnO nanowires.

Contact for further information:
zainizno@gmail.com

Megawati Omar | Research asia research news
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>