Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanowire Synthesis Using A Gas Blocker In A Catalytic Thermal CVD

Researchers of UiTM have invented a method to obstruct gas flow in the 2-furnace CVD system to synthesize ZnO nanowires.

Reported by Megawati Omar, Research Management Institute, UiTM

Researchers Mohd Zainizan Sahdan, Mohd Hafiz Mamat, Zuraida Khusaimi, Mohd Noor and Mohd Rusop Mahmud of the Faculty of Electrical Engineering and the Faculty of Applied Sciences, UiTM invented a method to obstruct gas flow in the 2-furnace CVD system to synthesize ZnO nanowires. ZnO nanowires can be synthesized using 2-furnace chemical vapour deposition (CVD) system but the gas flow is an important parameter for the nanowire synthesis as it is challenging to deposit ZnO nanowires it.

These researchers invented and placed a gas blocker at the end of the precursor furnace to obstruct the gas flow. Argon gas with ZnO vapour would hit the gas blocker and it would flow back to the opposite direction. Since Argon gas flowing from left was stronger, with a gold catalyst, it would repel to flow back onto the glass substrate. ZnO microball then would be formed and due to high energy, ZnO nanowires grew on the ZnO microball. High density of ZnO nanowires were synthesized by the gas blocker in the Catalytic Thermal CVD.

In the experiment, this gas blocker controlled a better flow of gas. ZnO nanowires on ZnO microballs were deposited on a glass substrate with high density and repeatability. The Ultra Violet-Visible (UV-Vis) spectrometer showed that ZnO nanowires had high absorption in the UV region which is an important criterion for solar cell applications. The photoluminescence study indicated that ZnO nanowires exhibited a strong excitation in the UV region which is suitable for UV laser diode applications.

Blocking the gas offers a better control of gas flow. Other that that, the fabricated ZnO nanowires has high UV absorption, thus the invention will be useful for light harvesting devices such as solar cells. As ZnO nanowires have strong UV emission, it is also good for light emitting devices such as laser diodes. Lastly, it offers strong impact on the physical and optical properties of ZnO nanowires.

Contact for further information:

Megawati Omar | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>