Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Nanotechnology Meets Quantum Physics in One Dimension

24.01.2014
New experiment supports long-predicted “Luttinger liquid” model

How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

The question has intrigued scientists for more than half a century. In 1950, Japanese Nobel Prize winner Sin-Itiro Tomonaga, followed by American physicist Joaquin Mazdak Luttinger in 1963, came up with a mathematical model showing that the effects of one particle on all others in a one-dimensional line would be much greater than in two- or three-dimensional spaces. Among quantum physicists, this model came to be known as the “Luttinger liquid” state.

Until very recently, however, there had been only a few successful attempts to test the model in devices similar to those in computers, because of the engineering complexity involved. Now, scientists from McGill University and Sandia National Laboratories have succeeded in conducting a new experiment that supports the existence of the long-sought-after Luttinger liquid state. Their findings, published in the Jan. 23 issue of Science Express, validate important predictions of the Luttinger liquid model.

The experiment was led by McGill PhD student Dominique Laroche under the supervision of Professor Guillaume Gervais of McGill’s Department of Physics and Dr. Michael Lilly of Sandia National Laboratories in Albuquerque, N.M. The new study follows on the team’s discovery in 2011 of a way to engineer one of the world’s smallest electronic circuits, formed by two wires separated by only about 15 nanometers, or roughly 150 atoms.

What does one-dimensional quantum physics involve? Gervais explains it this way: “Imagine that you are driving on a highway and the traffic is not too dense. If a car stops in front of you, you can get around it by passing to the left or right. That’s two-dimensional physics. But if you enter a tunnel with a single lane and a car stops, all the other cars behind it must slam on the brakes. That’s the essence of the Luttinger liquid effect. The way electrons behave in the Luttinger state is entirely different because they all become coupled to one another.”

To scientists, “what is so fascinating and elegant about quantum physics in one dimension is that the solutions are mathematically exact,” Gervais adds. “In most other cases, the solutions are only approximate.”

Making a device with the correct parameters to conduct the experiment was no simple task, however, despite the team’s 2011 discovery of a way to do so. It took years of trial, and more than 250 faulty devices – each of which required 29 processing steps – before Laroche’s painstaking efforts succeeded in producing functional devices yielding reliable data. “So many things could go wrong during the fabrication process that troubleshooting the failed devices felt like educated guesswork at times,” explains Laroche. “Adding in the inherent failure rate compounded at each processing step made the fabrication of these devices extremely challenging.”

In particular, the experiment measures the effect that a very small electrical current in one of the wires has on a nearby wire. This can be viewed as the “friction” between the two circuits, and the experiment shows that this friction increases as the circuits are cooled to extremely low temperatures. This effect is a strong prediction of Luttinger liquid theory.

The experiments were conducted both at McGill University and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility operated by Sandia National Laboratories.

"It took a very long time to make these devices," said Lilly. "It's not impossible to do in other labs, but Sandia has crystal-growing capabilities, a microfabrication facility, and support for fundamental research from DOE's office of Basic Energy Sciences (BES), and we're very interested in understanding the fundamental ideas that drive the behavior of very small systems."

The findings could lead to practical applications in electronics and other fields. While it’s difficult at this stage to predict what those might be, “the same was true in the case of the laser when it was invented,” Gervais notes. “Nanotechnologies are already helping us in medicine, electronics and engineering – and this work shows that they can help us get to the bottom of a long-standing question in quantum physics.”

The research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canadian Institute for Advanced Research (CIFAR), and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT).

Chris Chipello | Newswise
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>