Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology makes supertelescopes much more sensitive

04.02.2009
Nanotechnologist Chris Lodewijk has succeeded in significantly increasing the sensitivity of the new supertelescopes in Chile. He will receive his PhD on this topic at Delft University of Technology on Monday 2 February.

In Chile's Atacama desert, technicians and astronomers from around the world are currently working on the Atacama Large Millimeter Array (ALMA). This consists of 66 advanced telescopes which will be placed at an altitude of 5,000 metres and together will provide a more precise image of the universe.

They are chiefly aimed at shedding light on the question of how stars and planets are formed. ALMA is expected to be taken into service in 2012 and is viewed by astronomers as a major step forward for their field.

Aluminium nitride

Dutch astronomers have been closely involved in developing ALMA in a fruitful collaboration with nanotechnologists. The latest contribution from the nano-world comes from PhD candidate Chris Lodewijk and technician Tony Zijlstra at Delft University of Technology's Kavli Institute of Nanoscience. They have succeeded in drastically increasing the sensitivity of ALMA in a crucial frequency range by improving the functioning of the major component, the radiation-sensor.

This involves what are known as super-conducting tunnel junctions. These miniscule sensors comprise two superconductors which are separated by an insulating layer measuring 1 to 2 nanometres, usually of aluminium oxide, with an area of 500 by 500 nanometres.

However, it is impossible to avoid a very thin layer of 1 nanometre of aluminium oxide 'leaking' in certain spots. Lodewijk and Zijlstra therefore conducted research into replacing aluminium oxide with aluminium nitride (AlN), with spectacular results. An aluminium nitride layer proves to be much more homogeneous and its sensitivity, in the 602 to 720 GHz range, is also much improved.

Herschel

Incidentally, Lodewijk's research topic of super-conducting tunnel junctions is also essential to the functioning of the Herschel Space Telescope, which is to be launched in April. The Herschel Space Telescope is the successor to the Hubble telescope. Delft University of Technology's Kavli Institute of Nanoscience has developed many of the crucial tunnel junctions for the Herschel Telescope's measuring equipment.

Frank Nuijens | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>