Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanotechnology Converts Heat into Power When It’s Needed Most

23.02.2012
Never get stranded with a dead cell phone again. A promising new technology called Power Felt, a thermoelectric device that converts body heat into an electrical current, soon could create enough juice to make another call simply by touching it.

Developed by researchers in the Center for Nanotechnology and Molecular Materials at Wake Forest University, Power Felt is comprised of tiny carbon nanotubes locked up in flexible plastic fibers and made to feel like fabric. The technology uses temperature differences – room temperature versus body temperature, for instance – to create a charge.

Their research appears in the current issue of Nano Letters, a leading journal in nanotechnology.

“We waste a lot of energy in the form of heat. For example, recapturing a car’s energy waste could help improve fuel mileage and power the radio, air conditioning or navigation system,” says researcher and Wake Forest graduate student Corey Hewitt. “Generally thermoelectrics are an underdeveloped technology for harvesting energy, yet there is so much opportunity.”

Potential uses for Power Felt include lining automobile seats to boost battery power and service electrical needs, insulating pipes or collecting heat under roof tiles to lower gas or electric bills, lining clothing or sports equipment to monitor performance, or wrapping IV or wound sites to better track patients’ medical needs.

“Imagine it in an emergency kit, wrapped around a flashlight, powering a weather radio, charging a prepaid cell phone,” says David Carroll, director of the Center for Nanotechnology and Molecular Materials. “Power Felt could provide relief during power outages or accidents.”

Cost has prevented thermoelectrics from being used more widely in consumer products.

Standard thermoelectric devices use a much more efficient compound called bismuth telluride to turn heat into power in products including mobile refrigerators and CPU coolers, but researchers say it can cost $1,000 per kilogram. Like silicon, they liken Power Felt’s affordability to demand in volume and think someday it could cost only $1 to add to a cell phone cover.

Currently, 72 stacked layers in the fabric yield about 140 nanowatts of power. The team is evaluating several ways to add more nanotube layers and make them even thinner to boost the power output.

Although there’s more work to do before Power Felt is ready for market, Hewitt says, “I imagine being able to make a jacket with a completely thermoelectric inside liner that gathers warmth from body heat, while the exterior remains cold from the outside temperature. If the Power Felt is efficient enough, you could potentially power an iPod, which would be great for distance runners. It’s definitely within reach.”

Wake Forest is in talks with investors to produce Power Felt commercially.

For more information on Power Felt and thermoelectrics research at Wake Forest, go to http://www.wfu.edu/~carroldl/Thermoelectrics.html.

About Wake Forest University
Wake Forest University combines the best traditions of a small liberal arts college with the resources of a large research university. Founded in 1834, the school is located in Winston-Salem, N.C. The University’s graduate school of arts and sciences, divinity school, and nationally ranked schools of law, medicine and business enrich our intellectual environment. Learn more about Wake Forest University at www.wfu.edu

Katie Neal | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>