Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech milling produces dramatic increase in thermoelectric performance of bulk semiconductor

26.01.2011
Researchers from Boston College, MIT, Clemson University and the University of Virginia have used nanotechnology to achieve a 60-90 percent increase in the thermoelectric figure of merit of p-type half-Heusler, a common bulk semiconductor compound, the team reported in the journal Nano Letters.

The dramatic increase in the figure of merit, used to measure a material’s relative thermoelectric performance, could pave the way for a new generation of products – from car exhaust systems and power plants to solar power technology – that that runs cleaner, according to co-author Yan Xiao, a researcher in the Department of Physics at Boston College.

The team registered improvement in half-Heusler, which has been under study for its thermal stability, mechanical sturdiness, non-toxicity and low cost. However, the application of half-Heusler has been limited because of its poor thermoelectric performance: it previously registered a peak figure of merit of approximately 0.5 at 700 oC for bulk ingots.

Xiao, working with BC Professor of Physics Zhifeng Ren and MIT’s Soderberg Professor of Power Engineering Gang Chen, have increased the figure of merit value of p-type half-Heusler to 0.8 at 700 oC. Moreover, the groups’ material preparation methods proved to save time and expense compared with conventional methods.

“This method is low cost and can be scaled for mass production,” Ren said. “This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner.”

The researchers obtained their results by first forming alloyed ingots using arc melting technique and then creating nanoscale powders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Transport property measurements together with microstructure studies on the nanostructured samples, in comparison with that of bulk ingots, showed that the thermoelectric performance improves largely because of low thermal conductivity produced by enhanced phonon scattering at grain boundaries and defects in the material. The material was also found to have a high Seebeck coefficient, a measure of thermoelectric power.

Researchers in the BC and MIT labs are still trying to prevent grain growth during press, which accounts for the still large thermal conductivity of half-Heusler.

“Even lower thermal conductivity and improved thermoelectric performance can be expected when average grain sizes are made smaller than 100 nm,” said Ren, who was joined on the team by fellow Boston College researchers Giri Joshi, Weishu Liu, Yucheng Lan and Hui Wang, MIT’s Sangyeop Lee, Virginia’s Rogers Professor of Physics Joe Poons and J.W. Simonson and Clemson Professor of Physics Terry M. Tritt.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>