Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech milling produces dramatic increase in thermoelectric performance of bulk semiconductor

26.01.2011
Researchers from Boston College, MIT, Clemson University and the University of Virginia have used nanotechnology to achieve a 60-90 percent increase in the thermoelectric figure of merit of p-type half-Heusler, a common bulk semiconductor compound, the team reported in the journal Nano Letters.

The dramatic increase in the figure of merit, used to measure a material’s relative thermoelectric performance, could pave the way for a new generation of products – from car exhaust systems and power plants to solar power technology – that that runs cleaner, according to co-author Yan Xiao, a researcher in the Department of Physics at Boston College.

The team registered improvement in half-Heusler, which has been under study for its thermal stability, mechanical sturdiness, non-toxicity and low cost. However, the application of half-Heusler has been limited because of its poor thermoelectric performance: it previously registered a peak figure of merit of approximately 0.5 at 700 oC for bulk ingots.

Xiao, working with BC Professor of Physics Zhifeng Ren and MIT’s Soderberg Professor of Power Engineering Gang Chen, have increased the figure of merit value of p-type half-Heusler to 0.8 at 700 oC. Moreover, the groups’ material preparation methods proved to save time and expense compared with conventional methods.

“This method is low cost and can be scaled for mass production,” Ren said. “This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner.”

The researchers obtained their results by first forming alloyed ingots using arc melting technique and then creating nanoscale powders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Transport property measurements together with microstructure studies on the nanostructured samples, in comparison with that of bulk ingots, showed that the thermoelectric performance improves largely because of low thermal conductivity produced by enhanced phonon scattering at grain boundaries and defects in the material. The material was also found to have a high Seebeck coefficient, a measure of thermoelectric power.

Researchers in the BC and MIT labs are still trying to prevent grain growth during press, which accounts for the still large thermal conductivity of half-Heusler.

“Even lower thermal conductivity and improved thermoelectric performance can be expected when average grain sizes are made smaller than 100 nm,” said Ren, who was joined on the team by fellow Boston College researchers Giri Joshi, Weishu Liu, Yucheng Lan and Hui Wang, MIT’s Sangyeop Lee, Virginia’s Rogers Professor of Physics Joe Poons and J.W. Simonson and Clemson Professor of Physics Terry M. Tritt.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>