Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech milling produces dramatic increase in thermoelectric performance of bulk semiconductor

26.01.2011
Researchers from Boston College, MIT, Clemson University and the University of Virginia have used nanotechnology to achieve a 60-90 percent increase in the thermoelectric figure of merit of p-type half-Heusler, a common bulk semiconductor compound, the team reported in the journal Nano Letters.

The dramatic increase in the figure of merit, used to measure a material’s relative thermoelectric performance, could pave the way for a new generation of products – from car exhaust systems and power plants to solar power technology – that that runs cleaner, according to co-author Yan Xiao, a researcher in the Department of Physics at Boston College.

The team registered improvement in half-Heusler, which has been under study for its thermal stability, mechanical sturdiness, non-toxicity and low cost. However, the application of half-Heusler has been limited because of its poor thermoelectric performance: it previously registered a peak figure of merit of approximately 0.5 at 700 oC for bulk ingots.

Xiao, working with BC Professor of Physics Zhifeng Ren and MIT’s Soderberg Professor of Power Engineering Gang Chen, have increased the figure of merit value of p-type half-Heusler to 0.8 at 700 oC. Moreover, the groups’ material preparation methods proved to save time and expense compared with conventional methods.

“This method is low cost and can be scaled for mass production,” Ren said. “This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner.”

The researchers obtained their results by first forming alloyed ingots using arc melting technique and then creating nanoscale powders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Transport property measurements together with microstructure studies on the nanostructured samples, in comparison with that of bulk ingots, showed that the thermoelectric performance improves largely because of low thermal conductivity produced by enhanced phonon scattering at grain boundaries and defects in the material. The material was also found to have a high Seebeck coefficient, a measure of thermoelectric power.

Researchers in the BC and MIT labs are still trying to prevent grain growth during press, which accounts for the still large thermal conductivity of half-Heusler.

“Even lower thermal conductivity and improved thermoelectric performance can be expected when average grain sizes are made smaller than 100 nm,” said Ren, who was joined on the team by fellow Boston College researchers Giri Joshi, Weishu Liu, Yucheng Lan and Hui Wang, MIT’s Sangyeop Lee, Virginia’s Rogers Professor of Physics Joe Poons and J.W. Simonson and Clemson Professor of Physics Terry M. Tritt.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>