Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures filter light to order

07.11.2013
Arrays of nanoscale pillars made to reflect light of a selected color could find application as optical filters in digital cameras

A beam of sunlight is a mixture of different-colored light, including all the colors of the rainbow. Filtering or blocking a specific color, or colors, is often important in photography, color displays and other imaging techniques.


Altering the size and separation of these nanoscale mirrors changes the color of light that they reflect.
Copyright : 2013 A*STAR Institute of Materials Research and Engineering

An international team of engineers has now fabricated arrays of silver nanoscale pillars that can selectively reflect light of any desired color1. The team, led by Jinghua Teng and Yan Jun Liu at the A*STAR Institute of Materials Research and Engineering in Singapore, show that the color can be selected by varying the size of the pillars.

The stained glass in the windows of a church owes its color in part to an effect called surface plasmon resonance: light passing through the window interacts with electrons in the nanometer-sized metallic impurities that are trapped in the glass.

Light of a specific color, or wavelength, forces these electrons to quickly oscillate. In turn, the oscillating electrons enhance the amount of light transmitted through the glass at this wavelength. Teng, Liu and their co-workers were able to transfer this plasmonic effect from light-transmitting windows to light-reflecting mirrors. “Our compact reflectors could be used for applications including color coding, anti-counterfeiting and product branding,” says Teng.

The researchers deposited 6 nanometers of titanium, followed by 180 nanometers of silver on a quartz substrate. Onto the silver layer, they etched arrays of cylinders with diameters of 300 to 500 nanometers and a center-to-center separation of 320 to 540 nanometers (see image). The resulting gap between some of the pillars was as small as 20 nanometers. To achieve these tiny features, the team used a technique called electron-beam lithography: they scanned a beam of electrons to pattern the required features onto a protective layer placed on top of the silver. Then, they used a stream of charged ion atoms to mill the exposed metal and create the nanopillars.

After construction, Teng, Liu and their team shone white light onto each of the arrays and measured the wavelength of the reflected radiation. Arrays of cylinders of 500 nanometers in diameter and separated by 40 nanometers appeared red because they predominantly reflected light with a wavelength of 630 nanometers. Similarly, pillars with a diameter of 300 nanometers and a separation of 20 nanometers appeared blue as they reflected light with a 490-nanometer wavelength.

“We are now working to further develop this technique to create large-area color displays,” says Teng. “We also aim to develop applications and collaborations with industry.”

Journal information

Si, G., Zhao, Y., Lv, J., Lu, M., Wang, F. et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>