Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanosciences: Strasbourg equipped with one of the best-performing microscopes in Europe

19.01.2009
The Institut de physique et de chimie des matériaux de Strasbourg (IPCMS - CNRS/Université de Strasbourg) inaugurated its new transmission electron microscope on 9 January 2009.

This instrument, which will be devoted to studying matter at the atomic scale, is one of the best-performing in Europe. The microscope and its installation cost 2.38 M€, half of which was funded by CNRS.

The new microscope joins the instrumental platform of IPCM, a laboratory which is devoted to the study of nanomaterials and nanosciences, at scales going from the single molecule and agregates of several dozen atoms to organized nanostructures on surfaces and mono- and bi-dimensional objects.

This microscope is part of the electron microscopy platform of the Pôle matériaux et nanosciences Alsace, directed by Marc Drillon, director of IPCMS, which brings together 14 CNRS laboratories, 3 engineering schools and 2 innovation and technology transfer centers.

It will be used for scientific projects in the fields of information and communication sciences and technologies, transportation, energy and biomedicine. It will be a particularly precious tool for the Alsacian competitiveness clusters « Véhicule du Futur » and « Innovations Thérapeutiques ». Relevant research topics include nanostructures for spin electronics, functional nanoparticles, polymers and hybrid materials, carbon materials, controlled porosity materials for catalysis and biomaterials.

The new microscope (JEOL 2100F) makes it possible to map the position of atoms within matter, to determine their nature and study in-situ the properties of nano-objects. Several functions enhance its performance:

- aberration correctors, which improve the signal to noise
ration in scanning mode (resolution of 0,11 nm), at a cost of 800,000 euros.
- two rotating specimen holders, for three dimensional imaging.
- electron energy loss spectroscopy, which quantitatively
analyzes the chemical composition of the sample (resolution of 0,2 nm).
The total cost of the project includes the microscope (2.03 M€) as well as the installation of the locale and the instrument (0.35 M€). CNRS provided half of the funding, and the rest came from the Ministry of Higher Education and Research and from local governing bodies, via the State-Region contract, and the Foundation for Chemical Research.

Transmission electron microscopy

In a transmission electron microscope, a sufficienty thin specimen is placed under a beam of electrons which passes through it. The electrons interact with the specimen, then pass through a system of magnetic lenses before reaching a fluorescent screen which converts the electronic image into an optical image. The main advantage of this type of microscope is that it combines the very high resolution (in this case 0,11 nm) of X-ray diffraction, which provides data about the crystalline structure of the specimen, with X-ray spectroscopy, which provides data about the chemical nature of the specimen. Unlike light microscopes, the resolution is not limited by the wavelength of the electrons but rather by the aberrations due to magnetic lenses .

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Physics and Astronomy:

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Towards universal influenza vaccines – is Neuraminidase underrated?

22.06.2018 | Life Sciences

Thermal Radiation from Tiny Particles

22.06.2018 | Physics and Astronomy

Polar ice may be softer than we thought

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>