Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale spin waves can replace microwaves

07.09.2011
A group of scientists from the University of Gothenburg and the Royal Institute of Technology (KTH), Sweden, have become the first group in the world to demonstrate that theories about nanoscale spin waves agree with observations.

This opens the way to replacing microwave technology in many applications, such as mobile phones and wireless networks, by components that are much smaller, cheaper, and that require less resources. The study has been published in the scientific journal Nature Nanotechnology, the most prestigious journal in nanoscience.


Spin waves spread from a magnetic nanocontact like rings on water. Universität Göteborg

“We have been in competition with two other research groups to be the first to confirm experimentally theoretical predictions that were first made nearly 10 years ago. We have been successful due to our method for constructing magnetic nanocontacts and due to the special microscope at our collaborators’ laboratory at the University of Perugia in Italy”, says Professor Johan Åkerman of the Department of Physics, University of Gothenburg, where he is head of the Applied Spintronics group.

The aim of the research project, which started two years ago, has been to demonstrate the propagation of spin waves from magnetic nanocontacts. Last autumn, the group was able to demonstrate the existence of spin waves with the aid of electrical measurements, and the results were published in the scientific journal Physical Review Letters. The new results have been published in Nature Nanotechnology, the most prestigious journal in nanoscience.

The research group has used one of the three advanced spin wave microscopes in the world, at the university in the Italian town of Perugia, to visualise the motion. The microscope makes it possible to see the dynamic properties of components with a resolution of approximately 250 nanometre.

The results have opened the way for a new field of research known as “magnonics”, using nanoscale magnetic waves.

“I believe that our results will signal the start of a rapid development of magnonic components and circuits. What is particularly exciting is that these components are powered by simple direct current, which is then converted into spin waves in the microwave region. The frequency of these waves can be directly controlled by the current. This will make completely new functions possible”, says Johan Åkerman, who is looking forward to exciting developments in the next few years.

Its magneto-optical and metallic properties mean that magnonic technology can be integrated with traditional microwave-based electronic circuits, and this will make completely untried combinations of the technologies possible. Magnonic components are much more suitable for miniaturisation than traditional microwave technology.

Contact:
Professor Johan Åkerman, Department of Physics, University of Gothenburg
+46 (0)31 786 9147
+46 (0)70 710 4360
johan.akerman@physics.gu.se
Animated simulations of spin waves can be found on our YouTube channel:
http://youtu.be/PFnLRXzl4uI
The simulation of magnetic nanocontacts shows how spin waves spread like rings on water. The nanocontact has a diameter of 40 nanometre and the spin waves are created in a thin film of nickel-iron alloy, 3 nanometre thick.
http://youtu.be/EGV25mUxnmk
A simulation of six magnetic nanocontacts placed in a circle to illustrate how the nanocontacts can be placed in freely chosen patterns. All the signals synchronise in this case through the spin waves that propagate through the magnetic film.

Helena Aaberg | idw
Further information:
http://www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2011.140.html

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>