Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale pillars could radically improve conversion of heat to electricity

21.02.2014
University of Colorado Boulder scientists have found a creative way to radically improve thermoelectric materials, a finding that could one day lead to the development of improved solar panels, more energy-efficient cooling equipment, and even the creation of new devices that could turn the vast amounts of heat wasted at power plants into more electricity.

The technique—building an array of tiny pillars on top of a sheet of thermoelectric material—represents an entirely new way of attacking a century-old problem, said Mahmoud Hussein, an assistant professor of aerospace engineering sciences who pioneered the discovery.

The thermoelectric effect, first discovered in the 1800s, refers to the ability to generate an electric current from a temperature difference between one side of a material and the other. Conversely, applying an electric voltage to a thermoelectric material can cause one side of the material to heat up while the other stays cool, or, alternatively, one side to cool down while the other stays hot.

Devices that incorporate thermoelectric materials have been used in both ways: to create electricity from a heat source, such as the sun, for example, or to cool precision instruments by consuming electricity.

However, the widespread use of thermoelectric materials has been hindered by a fundamental problem that has kept scientists busy for decades. Materials that allow electricity to flow through them also allow heat to flow through them. This means that at the same time a temperature difference creates an electric potential, the temperature difference itself begins to dissipate, weakening the current it created.

Until the 1990s, scientists addressed this problem by looking for materials with intrinsic properties that allowed electricity to flow more easily than heat.

"Until 20 years ago, people were looking at the chemistry of the materials," Hussein said. "And then nanotechnology came into the picture and allowed researchers to engineer the materials for the properties they wanted."

Using nanotechnology, material physicists began creating barriers in thermoelectric materials—such as holes or particles—that impeded the flow of heat more than the flow of electricity. But even under the best scenario, the flow of electrons—which carry electric energy—also was slowed.

In a new study published in the journal Physical Review Letters, Hussein and doctoral student Bruce Davis demonstrate that nanotechnology could be used in an entirely different way to slow the heat transfer without affecting the motion of electrons.

The new concept involves building an array of nanoscale pillars on top of a sheet of a thermoelectric material, such as silicon, to form what the authors call a "nanophononic metamaterial." Heat is carried through the material as a series of vibrations, known as phonons. The atoms making up the miniature pillars also vibrate at a variety of frequencies. Davis and Hussein used a computer model to show that the vibrations of the pillars would interact with the vibrations of the phonons, slowing down the flow of heat. The pillar vibrations are not expected to affect the electric current.

The team estimates that their nanoscale pillars could reduce the heat flow through a material by half, but the reduction could be significantly stronger because the calculations were made very conservatively, Hussein said.

"If we can improve thermoelectric energy conversion significantly, there will be all kinds of important practical applications," Hussein said. These include recapturing the waste heat emitted by different types of equipment—from laptops to cars to power plants—and turning that heat into electricity. Better thermoelectrics also could vastly improve the efficiency of solar panels and refrigeration devices.

The next step is for Hussein to partner with colleagues in the physics department and other institutions to fabricate the pillars so that the idea can be tested in the lab. "This is still early in the phase of laboratory demonstration but the remaining steps are within reach."

Hussein also hopes to further refine the models he used to gain additional insight into the underlying physics. "A team of highly motivated Ph.D. students are working with me around the clock on this project," he said.

The research was funded by the National Science Foundation.
Read the study at http://prl.aps.org/abstract/PRL/v112/i5/e055505.

Mahmoud Hussein | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Mainz-based physicists find missing link between glass formation and crystallization
01.07.2016 | Johannes Gutenberg-Universität Mainz

nachricht Astronomers release spectacular survey of the distant universe
01.07.2016 | University of Nottingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>