Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoscale electrical phenomenon discovered

19.05.2010
At the scale of the very small, physics can get peculiar. A University of Michigan biomedical engineering professor has discovered a new instance of such a nanoscale phenomenon—one that could lead to faster, less expensive portable diagnostic devices and push back frontiers in building micro-mechanical and "lab on a chip" devices.

In our macroscale world, materials called conductors effectively transmit electricity and materials called insulators or dielectrics don't, unless they are jolted with an extremely high voltage. Under such "dielectric breakdown" circumstances, as when a bolt of lightening hits a rooftop, the dielectric (the rooftop in this example) suffers irreversible damage.

This isn't the case at the nanoscale, according to a new discovery by Alan Hunt, an associate professor in the Department of Biomedical Engineering. Hunt and his research team were able to get an electric current to pass nondestructively through a sliver of glass, which isn't usually a conductor.

A paper on the research is newly published online in Nature Nanotechnology.

"This is a new, truly nanoscale physical phenomenon," Hunt said. "At larger scales, it doesn't work. You get extreme heating and damage.

"What matters is how steep the voltage drop is across the distance of the dielectric. When you get down to the nanoscale and you make your dielectric exceedingly thin, you can achieve the breakdown with modest voltages that batteries can provide. You don't get the damage because you're at such a small scale that heat dissipates extraordinarily quickly."

These conducting nanoscale dielectric slivers are what Hunt calls liquid glass electrodes, fabricated at the U-M Center for Ultrafast Optical Science with a femtosecond laser, which emits light pulses that are only quadrillionths of a second long.

The glass electrodes are ideal for use in lab-on-a-chip devices that integrate multiple laboratory functions onto one chip just millimeters or centimeters in size. The devices could lead to instant home tests for illnesses, food contaminants and toxic gases. But most of them need a power source to operate, and right now they rely on wires to route this power. It's often difficult for engineers to insert these wires into the tiny machines, Hunt said.

"The design of microfluidic devices is constrained because of the power problem," Hunt said. "But we can machine electrodes right into the device."

Instead of using wires to route electricity, Hunt's team etches channels through which ionic fluid can transmit electricity. These channels, 10 thousand times thinner than the dot of this "i," physically dead-end at their intersections with the microfluidic or nanofluidic channels in which analysis is being conducted on the lab-on a-chip (this is important to avoid contamination). But the electricity in the ionic channels can zip through the thin glass dead-end without harming the device in the process.

This discovery is the result of an accident. Two channels in an experimental nanofluidic device didn't line up properly, Hunt said, but the researchers found that electricity did pass through the device.

"We were surprised by this, as it runs counter to accepted thinking about the behavior of nonconductive materials," Hunt said. "Upon further study we were able to understand why this could happen, but only at the nanometer scale."

As for electronics applications, Hunt said that the wiring necessary in integrated circuits fundamentally limits their size.

"If you could utilize reversible dielectric breakdown to work for you instead of against you, that might significantly change things," Hunt said.

The paper is called "Liquid glass electrodes for nanofluidics." This research is funded by the National Institutes of Health.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference. Find out more at www.engin.umich.edu.

Contact: Nicole Casal Moore
Phone: (734) 647-7087

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Ferchau Engineering Science TV microfluidic device toxic gas

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>