Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanophysicists find unexpected magnetic effect

04.05.2009
Kondo effect noted in single-atom contacts of pure ferromagnets

Spanish and U.S. physicists studying nanoelectronics have found that size really does matter when it comes to predicting the behavior of electrical contacts that are just one atom wide.

In new research appearing this week in the journal Nature, physicists at Spain's University of Alicante and at Rice University in Houston have found that single-atom contacts made of ferromagnetic metals like iron, cobalt and nickel behave very differently than do slightly larger versions that are on the order of the devices used in today's electronic gadgets.

"We've found that the last atom in the line, the one out there on the very end, doesn't want to align itself and behave like we expect it to," said study co-author Doug Natelson, associate professor of physics and astronomy at Rice. "What this shows is that you can really alter what you think of as a defining property of these metals just by reducing their size."

The findings center on the "Kondo effect," one of the most studied and well documented phenomena in magnetic materials. Scientists learned early in the study of electromagnetism that normal metals, like copper, conduct electricity better as they became colder. But in the 1930s, scientists found that adding even trace amounts of ferromagnetic metals like iron would throw off this effect. In the 1960s, Japanese physicist Jun Kondo explained the effect: while cooling normal metals results in fewer vibrations among atoms, and thus less electrical resistance, mobile electrons in the metals tend to align their spins in the opposite direction of the spins of electrons in a magnetic atom. Thus, at low temperatures, an electron moving past a magnetic impurity will tend to flip its spin and therefore get deflected from its path. This explains why even tiny magnetic impurities can cause electrical resistance to rise, in spite of further cooling.

Based on decades of experimental evidence, physicists would not ordinarily expect the Kondo effect to play a role in wires and contacts made entirely of ferromagnetic metals like iron, cobalt and nickel. Yet that is precisely what co-authors Maria Reyes Calvo and Carlos Untiedt found occurring in experiments in Untiedt's laboratory in Alicante, Spain, in 2008. Calvo, a graduate student, was working with single-atom ferromagnetic contacts that were created by lowering and raising the tip of a scanning tunneling microscope onto a surface.

Untiedt knew that Natelson worked on similar-sized systems that were created in a wholly different way, by laying down metals on a flat surface. So Untiedt arranged for a travel grant from the Spanish government and Natelson agreed to oversee Calvo's recreation of the study at Rice.

"Reyes was a very quick study, and within just a few weeks she had mastered our technique for making single-atom junctions," Natelson said. "She conducted dozens of experiments on junctions made of cobalt and nickel, and we saw the characteristic Kondo effect in the conductance, just as she had seen in Spain."

Co-authors Joaquín Fernández-Rossier and Juan José Palacios, both of the University of Alicante, and David Jacob of Rutgers University. provided a theoretical framework to help explain the unexpected effect. Natelson said the team's discovery is yet another example of the unique types of effects that characterize nanotechnology.

"The fact that this atom is all by itself at the surface is what makes it behave so differently, and it shows that engineers need to be mindful of surface effects in anything they design at this level," Natelson said.

The research was supported by the European Union's Seventh Framework Program, the National Science Foundation, the Packard Foundation and the W.M. Keck Foundation.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>