Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanophysicists find unexpected magnetic effect

Kondo effect noted in single-atom contacts of pure ferromagnets

Spanish and U.S. physicists studying nanoelectronics have found that size really does matter when it comes to predicting the behavior of electrical contacts that are just one atom wide.

In new research appearing this week in the journal Nature, physicists at Spain's University of Alicante and at Rice University in Houston have found that single-atom contacts made of ferromagnetic metals like iron, cobalt and nickel behave very differently than do slightly larger versions that are on the order of the devices used in today's electronic gadgets.

"We've found that the last atom in the line, the one out there on the very end, doesn't want to align itself and behave like we expect it to," said study co-author Doug Natelson, associate professor of physics and astronomy at Rice. "What this shows is that you can really alter what you think of as a defining property of these metals just by reducing their size."

The findings center on the "Kondo effect," one of the most studied and well documented phenomena in magnetic materials. Scientists learned early in the study of electromagnetism that normal metals, like copper, conduct electricity better as they became colder. But in the 1930s, scientists found that adding even trace amounts of ferromagnetic metals like iron would throw off this effect. In the 1960s, Japanese physicist Jun Kondo explained the effect: while cooling normal metals results in fewer vibrations among atoms, and thus less electrical resistance, mobile electrons in the metals tend to align their spins in the opposite direction of the spins of electrons in a magnetic atom. Thus, at low temperatures, an electron moving past a magnetic impurity will tend to flip its spin and therefore get deflected from its path. This explains why even tiny magnetic impurities can cause electrical resistance to rise, in spite of further cooling.

Based on decades of experimental evidence, physicists would not ordinarily expect the Kondo effect to play a role in wires and contacts made entirely of ferromagnetic metals like iron, cobalt and nickel. Yet that is precisely what co-authors Maria Reyes Calvo and Carlos Untiedt found occurring in experiments in Untiedt's laboratory in Alicante, Spain, in 2008. Calvo, a graduate student, was working with single-atom ferromagnetic contacts that were created by lowering and raising the tip of a scanning tunneling microscope onto a surface.

Untiedt knew that Natelson worked on similar-sized systems that were created in a wholly different way, by laying down metals on a flat surface. So Untiedt arranged for a travel grant from the Spanish government and Natelson agreed to oversee Calvo's recreation of the study at Rice.

"Reyes was a very quick study, and within just a few weeks she had mastered our technique for making single-atom junctions," Natelson said. "She conducted dozens of experiments on junctions made of cobalt and nickel, and we saw the characteristic Kondo effect in the conductance, just as she had seen in Spain."

Co-authors Joaquín Fernández-Rossier and Juan José Palacios, both of the University of Alicante, and David Jacob of Rutgers University. provided a theoretical framework to help explain the unexpected effect. Natelson said the team's discovery is yet another example of the unique types of effects that characterize nanotechnology.

"The fact that this atom is all by itself at the surface is what makes it behave so differently, and it shows that engineers need to be mindful of surface effects in anything they design at this level," Natelson said.

The research was supported by the European Union's Seventh Framework Program, the National Science Foundation, the Packard Foundation and the W.M. Keck Foundation.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>