Nanoparticles with pulse laser controlled antibacterial properties

When gold-coated silver nanoplates are irradiated with a pulsed laser, they change shape into a sphere and release silver ions which produces a strong antibacterial effect. Credit: Dr. Takuro Niidome

Pulsed laser irradiation on the gold-coated silver nanoparticles (Ag@Au NPs) provided a solution to the problem. When Ag@Au NPs are irradiated with a pulse laser, the morphology of the NPs changes from a triangular plate to a spherical shape. This is due to the metals melting from the heat of the laser pulse.

The researchers showed that Ag@Au NPs were about half triangular and half spherical before irradiation but jumped to 94% spherical after irradiation. Furthermore, the silver-to-gold ratio of the pre-irradiation Ag@Au NPs was around 22:1, but the post-irradiation ratio was near 4.5:1.

This was interpreted by the researchers as the generation of defects in the gold-coating which allowed for some of the silver to escape as ions. This is an important aspect of the pulsed laser irradiation process since the release of silver produces the bactericidal effect.

“We have developed a method to activate the antibacterial properties of silver nanoparticles at will,” said Professor Takuro Niidome, leader of the research group. “Our experiments have shown that, while non-irradiated gold-coated silver nanoparticles have only minor antibacterial properties, the effects are significantly increased after pulsed laser irradiation.

We hope to develop this technology further as a method of managing bacteria that have developed antibacterial resistance.”

The irradiated Ag@Au NPs were highly effective against Escherichia coli, resulting in a 0% colony survival rate. Silver NPs alone were similarly effective, but the Ag@Au NPs had the advantages of being activated as needed and did not tend to clump together like the silver NPs.

This research was posted online in the Royal Society of Chemistry journal Nanoscale on 11 October 2017.

###

[Reference]

Kyaw, K., Ichimaru, H., Kawagoe, T., Terakawa, M., Miyazawa, Y., Mizoguchi, D., Tsushida, M, Niidome, T. (2017). Effects of pulsed laser irradiation on gold-coated silver nanoplates and their antibacterial activity. Nanoscale. doi:10.1039/c7nr06513b

Media Contact

J. Sanderson EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

Partners & Sponsors