Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles increase biofuel performance

08.04.2011
How to put more bang in your biofuels? Nanoparticles! A new study in the Journal of Renewable and Sustainable Energy shows that the addition of alumina nanoparticles can improve the performance and combustion of biodiesel, while producing fewer emissions.

Why add nanoparticles? The idea, says lead author R. B. Anand, an associate professor of mechanical engineering at the National Institute of Technology in Tiruchirappalli, India, is that because of their high surface-to-volume ratio, the nanoparticles—which, in the study, had an average diameter of 51 billionths of a meter—have more reactive surfaces, allowing them to act as more efficient chemical catalysts, thus increasing fuel combustion. The presence of the particles also increases fuel–air mixing in the fuel, which leads to more complete burning.

In the study, Anand and co-author J. Sadhik Basha first used a mechanical agitator to create an emulsion consisting of jatropha biodiesel (a fuel derived from the crushed seeds of the jatropha plant), water, and a surfactant, then blended in different proportions of alumina nanoparticles. In addition to outperforming regular biofuel, the nanoparticle-spiked fuels produced significantly lower quantities of nitrogen oxide and carbon monoxide gases, and created less smoke.

The researchers are now testing other types of nanoparticles, including hollow carbon nanotubes, and investigating the effects of nano-additives to engine lubrication and cooling systems. One obstacle to the application of this kind of nanotechnology is the high cost of nanoparticle production, says Anand—who also cautions that nanoparticles "should be used judiciously," because they tend to "entrain into human bodies."

The article, "Role of nano-additive blended biodiesel emulsion fuel on the working characteristics of a diesel engine," by R. B. Anand and J. Sadhik Basha, appears in the Journal of Renewable and Sustainable Energy.

About the Journal of Renewable and Sustainable Energy

The Journal of Renewable and Sustainable Energy, published by the American Institute of Physics, is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. Content is published online daily, collected into bimonthly issues (6 times a year). As an electronic-only, web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.

About AIP

The American Institute of Physics is an organization of 10 physical sciences societies representing more than 135,000 scientists, engineers, and educators and is one of the largest publishers of scientific information in physics. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences. Offering publishing solutions for scientific societies and organizations in science and engineering, AIP pursues innovation in electronic publishing of scholarly journals. AIP publishes 13 journals (journals.aip.org), 2 magazines—including its flagship publication, Physics Today—and the AIP Conference Proceedings series. Scitation, AIP's online publishing platform, hosts 1.6 million articles from 190 scholarly journals, proceedings, and eBooks of learned society publishers. AIP also provides the international physical science community with UniPHY, the first literature-based social and professional networking site; it features pre-populated profiles of more than 300,000 scientists and enables collaboration among researchers worldwide.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>