Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles increase biofuel performance

08.04.2011
How to put more bang in your biofuels? Nanoparticles! A new study in the Journal of Renewable and Sustainable Energy shows that the addition of alumina nanoparticles can improve the performance and combustion of biodiesel, while producing fewer emissions.

Why add nanoparticles? The idea, says lead author R. B. Anand, an associate professor of mechanical engineering at the National Institute of Technology in Tiruchirappalli, India, is that because of their high surface-to-volume ratio, the nanoparticles—which, in the study, had an average diameter of 51 billionths of a meter—have more reactive surfaces, allowing them to act as more efficient chemical catalysts, thus increasing fuel combustion. The presence of the particles also increases fuel–air mixing in the fuel, which leads to more complete burning.

In the study, Anand and co-author J. Sadhik Basha first used a mechanical agitator to create an emulsion consisting of jatropha biodiesel (a fuel derived from the crushed seeds of the jatropha plant), water, and a surfactant, then blended in different proportions of alumina nanoparticles. In addition to outperforming regular biofuel, the nanoparticle-spiked fuels produced significantly lower quantities of nitrogen oxide and carbon monoxide gases, and created less smoke.

The researchers are now testing other types of nanoparticles, including hollow carbon nanotubes, and investigating the effects of nano-additives to engine lubrication and cooling systems. One obstacle to the application of this kind of nanotechnology is the high cost of nanoparticle production, says Anand—who also cautions that nanoparticles "should be used judiciously," because they tend to "entrain into human bodies."

The article, "Role of nano-additive blended biodiesel emulsion fuel on the working characteristics of a diesel engine," by R. B. Anand and J. Sadhik Basha, appears in the Journal of Renewable and Sustainable Energy.

About the Journal of Renewable and Sustainable Energy

The Journal of Renewable and Sustainable Energy, published by the American Institute of Physics, is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. Content is published online daily, collected into bimonthly issues (6 times a year). As an electronic-only, web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.

About AIP

The American Institute of Physics is an organization of 10 physical sciences societies representing more than 135,000 scientists, engineers, and educators and is one of the largest publishers of scientific information in physics. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences. Offering publishing solutions for scientific societies and organizations in science and engineering, AIP pursues innovation in electronic publishing of scholarly journals. AIP publishes 13 journals (journals.aip.org), 2 magazines—including its flagship publication, Physics Today—and the AIP Conference Proceedings series. Scitation, AIP's online publishing platform, hosts 1.6 million articles from 190 scholarly journals, proceedings, and eBooks of learned society publishers. AIP also provides the international physical science community with UniPHY, the first literature-based social and professional networking site; it features pre-populated profiles of more than 300,000 scientists and enables collaboration among researchers worldwide.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>