Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles improve solar collection efficiency

06.04.2011
Using minute graphite particles 1000 times smaller than the width of a human hair, mechanical engineers at Arizona State University hope to boost the efficiency—and profitability—of solar power plants.

Photovoltaic (PV) solar panels are popping up more and more on rooftops, but they're not necessarily the best solar power solution. "The big limitation of PV panels is that they can use only a fraction of the sunlight that hits them, and the rest just turns into heat, which actually hurts the performance of the panels," explains Robert Taylor, a graduate student in mechanical engineering at Arizona State University.

An alternative that can make use of all of the sunlight, including light PVs can't use, is the solar thermal collector. The purpose of these collectors—which take the form of dishes, panels, evacuated tubes, towers, and more—is to collect heat that can then be used to boil water to make steam, for example, which drives a turbine to create electricity.

To further increase the efficiency of solar collectors, Taylor and his colleagues have mixed nanoparticles—particles a billionth of a meter in size—into the heat-transfer oils normally used in solar thermal power plants. The researchers chose graphite nanoparticles, in part because they are black and therefore absorb light very well, making them efficient heat collectors. In laboratory tests with small dish collectors, Taylor and his colleagues found that nanoparticles increased heat-collection efficiency by up to 10 percent. "We estimate that this could mean up to $3.5 million dollars per year more revenue for a 100 megawatt solar power plant," he says.

What's more, Taylor adds, graphite nanoparticles "are cheap"—less than $1 per gram—but with 100 grams of nanoparticles providing the same heat-collecting surface area as an entire football field. "It might also be possible to filter out nanoparticles of soot, which have similar absorbing potential, from coal power plants for use in solar systems," he says. "I think that idea is particularly attractive: using a pollutant to harvest clean, green solar energy."

The article, "Applicability of nanofluids in high flux solar collectors" by Robert A. Taylor, Patrick E. Phelan, Todd P. Otanicar, Chad A. Walker, Monica Nguyen, Steven Trimble, and Ravi Prasher, appears in the Journal of Renewable and Sustainable Energy.

About the Journal of Renewable and Sustainable Energy

The Journal of Renewable and Sustainable Energy, published by the American Institute of Physics, is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. Content is published online daily, collected into bimonthly issues (6 times a year). As an electronic-only, web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields

About AIP

The American Institute of Physics is an organization of 10 physical sciences societies representing more than 135,000 scientists, engineers, and educators and is one of the largest publishers of scientific information in physics. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences. Offering publishing solutions for scientific societies and organizations in science and engineering, AIP pursues innovation in electronic publishing of scholarly journals. AIP publishes 13 journals (journals.aip.org), 2 magazines—including its flagship publication, Physics Today—and the AIP Conference Proceedings series. Scitation, AIP's online publishing platform, hosts 1.6 million articles from 190 scholarly journals, proceedings, and eBooks of learned society publishers. AIP also provides the international physical science community with UniPHY, the first literature-based social and professional networking site; it features pre-populated profiles of more than 300,000 scientists and enables collaboration among researchers worldwide.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>