Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanomethod paves the way for new measuring technology and hypersensitive sensors

26.10.2009
Researchers at Chalmers University of Technology in Sweden have developed a new measurement technology that makes use of optical resonances in nanoparticles.

The method, which opens new possibilities in the field of catalytics, will be published in the journal Science for November and is already available in the Web edition Science Express.

Optical resonances in nanoparticles, so-called plasmon resonances, have been the object of intensive research and development for about a decade now for detection of biological molecules and in optoelectronics.

The Chalmers scientists can now show that plasmon resonances in nanoparticles can be used to monitor reactions ON catalysts and for the design of sensors that are extremely sensitive.

The article is based on findings from doctoral work done by Elin Larsson and Christoph Langhammer. Co-authors are Igor Zoric and Bengt Kasemo, all in chemical physics at Chalmers.

The discoveries pave the way both for new measurement techniques in the nano field and the development of entirely new, hypersensitive sensors. With the new technology it will be possible to study catalysts in real time under realistic conditions, thus enhancing our knowledge of catalytic processes and helping develop new catalysts.

This helps bring down the use of both materials and energy in a number of processes and moreover reduces environmentally toxic emissions both from industry and vehicles.

Sensors are used daily in numerous areas, everything from medical diagnostics and control of industrial processes to combustion and catalytic cleaning of exhausts from vehicle engines. Today's sensors are often expensive and/or insufficient owing to short lifetimes, low selectivity and sensitivity, and lack of durability in demanding environments.

The new method is extremely robust and technologically simple, which will enable the development of inexpensive and robust sensors.

The research is continuing, targeting a number of diverse applications. Elin Larsson is further developing the method for the catalytic field at the Competence Center for Catalysis, KCK, at Chalmers.

Commercialization is being planned in the CleanSense Project, which was started within the framework of the Chalmers School of Entrepreneurship.

The research has largely been pursued as part of the SSF-funded project Photoactive Nanostructures, and is now continuing in the Nanotechnology for Sustainable Energy Project, funded by the Chalmers Foundation and the Swedish Energy Agency.

For more information, please contact:
Elin Larsson, Competence Center for Catalysis, Department of Applied Physics, Chalmers University of Technology
Phone: +46 (0)31-772 34 64; cell phone: +46 (0)70-394 81 04
elarsson@chalmers.se
Bengt Kasemo, Chemical Physics, Department of Applied Physics, Chalmers University of Technology

Phone: +46 (0)31-772 33 70; cell phone: +46 (0)70-828 26 01

Pressofficer Sofie Hebrand, sofie.hebrand@chalmers.se;+46 736-79 35 90

Sofie Hebrand | idw
Further information:
http://www.sciencemag.org/cgi/content/abstract/1176593
http://www.cleansense.se/
http://www.kck.chalmers.se

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>