Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One nano-step closer to weighing a single atom

29.07.2009
By studying gold nanoparticles with highly uniform sizes and shapes, scientists now understand how they lose energy, a key step towards producing nanoscale detectors for weighing any single atom.

Such ultrasensitive measurements could ultimately be used in areas such as medical research and diagnostics, enabling the detection of minuscule disease-causing agents such as viruses and prions at the single molecule level.

Researchers are interested in nanosized materials because the smaller the components of a detection device, the more sensitive it is.

In this study, the team from the University of Melbourne, Argonne’s Center for Nanoscale Materials in Illinois and the University of Chicago synthesized and studied tiny gold rods with a width 5000 times smaller than the thickness of a human hair.

The work will be published online this week in Nature Nanotechnology.

Professor John Sader from the Department of Mathematics and Statistics, University of Melbourne says that in the same way as a classroom ruler decreases its frequency of vibration when an eraser is attached, nanomechanical mass sensors work by measuring their change in vibration frequency as mass is added.

The sensitivity of such nanomechanical devices is intimately connected to how much energy they displace. So researchers needed to understand how damping (loss of energy) is transferred both to the fluid surroundings and within the nanostructures. With the lower the damping, the purer the mechanical resonance and higher the sensitivity.

It has not previously been possible to determine the rate at which vibrations in metal nanoparticle systems are damped, because of significant variations in the dimensions of the particles that have been studied – which masks the vibrations.

However, by studying a system of bipyramid-shaped gold nanoparticles with highly uniform sizes and shapes, the researchers overcame this limitation.

“Previous measurements of nanomechanical damping have primarily focused on devices where only one- or two-dimensions are nanoscale, such as long nanowires. Our measurements and calculations provide insight into how energy is dissipated in devices that are truly nanoscale in all three-dimensions,” says Professor Sader.

Illuminating these bipyramidal nanoparticle systems with an ultra-fast laser pulse, set them vibrating mechanically at microwave frequencies. These vibrations were long-lived and for the first time damping in these nanoparticle systems could be interrogated and characterized.

Moreover, the researchers separated out the portion of damping that is due to the material itself and that surrounding liquid for which they developed a parameter-free theoretical model that quantitatively explains this fluid damping.

Reference: M. Pelton, J. E. Sader, J. Burgin, M. Liu, P. Guyot-Sionnest, and D. Gosztola, “Damping of acoustic vibrations in gold nanoparticles,” Nature Nanotechnology.

More information:
Professor John E Sader
Department of Mathematics and Statistics
The University of Melbourne
Victoria, 3010 Australia
Ph: (613) 8344 4042
FAX: (613) 8344 4599
Dr Nerissa Hannink
Media Office
University of Melbourne
Ph (03) 8344 8151
Mob: 0430 588 055
Email: nhannink@unimelb.edu.au

Nerissa Hannink | EurekAlert!
Further information:
http://www.unimelb.edu.au

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>