Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-sized light mill drives micro-sized disk

07.07.2010
While those wonderful light sabers in the Star Wars films remain the figment of George Lucas’ fertile imagination, light mills – rotary motors driven by light – that can power objects thousands of times greater in size are now fact.

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory and the University of California (UC) Berkeley have created the first nano-sized light mill motor whose rotational speed and direction can be controlled by tuning the frequency of the incident light waves. It may not help conquer the Dark Side, but this new light mill does open the door to a broad range of valuable applications, including a new generation of nanoelectromechanical systems (NEMS), nanoscale solar light harvesters, and bots that can perform in vivo manipulations of DNA and other biological molecules.

“We have demonstrated a plasmonic motor only 100 nanometers in size that when illuminated with linearly polarized light can generate a torque sufficient to drive a micrometre-sized silica disk 4,000 times larger in volume,” says Xiang Zhang, a principal investigator with Berkeley Lab’s Materials Sciences Division and director of UC Berkeley’s Nano-scale Science and Engineering Center (SINAM), who led this research. “In addition to easily being able to control the rotational speed and direction of this motor, we can create coherent arrays of such motors, which results in greater torque and faster rotation of the microdisk.”

The success of this new light mill stems from the fact that the force exerted on matter by light can be enhanced in a metallic nanostructure when the frequencies of the incident light waves are resonant with the metal’s plasmons – surface waves that roll through a metal’s conduction electrons. Zhang and his colleagues fashioned a gammadion-shaped light mill type of nanomotor out of gold that was structurally designed to maximize the interactions between light and matter. The metamaterial-style structure also induced orbital angular momentum on the light that in turn imposed a torque on the nanomotor.

“The planar gammadion gold structures can be viewed as a combination of four small LC-circuits for which the resonant frequencies are determined by the geometry and dielectric properties of the metal,” says Zhang. “The imposed torque results solely from the gammadion structure’s symmetry and interaction with all incident light, including light which doesn’t carry angular momentum. Essentially we use design to encode angular momentum in the structure itself. Since the angular momentum of the light need not be pre-determined, the illuminating source can be a simple linearly polarized plane-wave or Gaussian beam.”

The results of this research are reported in the journal Nature Nanotechnology in a paper titled, “ Light-driven nanoscale plasmonic motors.” Co-authoring the paper with Zhang were Ming Liu, Thomas Zentgraf, Yongmin Liu and Guy Bartal.

It has long been known that the photons in a beam of light carry both linear and angular momentum that can be transferred to a material object. Optical tweezers and traps, for example, are based on the direct transfer of linear momentum. In 1936, Princeton physicist Richard Beth demonstrated that angular momentum – in either its spin or orbital form – when altered by the scattering or absorption of light can produce a mechanical torque on an object. Previous attempts to harness this transfer of angular momentum for a rotary motor have been hampered by the weakness of the interaction between photons and matter.

“The typical motors had to be at least micrometres or even millimeters in size in order to generate a sufficient amount of torque,” says lead author Ming Liu, a PhD student in Zhang’s group. “We’ve shown that in a nanostructure like our gammadion gold light mill, torque is greatly enhanced by the coupling of the incident light to plasmonic waves. The power density of our motors is very high. As a bonus, the rotational direction is controllable, a counterintuitive fact based on what we learn from wind mills.”

The directional change, Liu explains, is made possible by the support of the four-armed gammadion structure for two major resonance modes – a wavelength of 810 nanometers, and a wavelength of 1,700 nanometers. When illuminated with a linearly polarized Gaussian beam of laser light at the shorter wavelength, the plasmonic motor rotated counterclockwise at a rate of 0.3 Hertz. When illuminated with a similar laser beam but at the larger wavelength, the nanomotor rotated at the same rate of speed but in a clockwise direction.

"When multiple motors are integrated into one silica microdisk, the torques applied on the disk from the individual motors accumulate and the overall torque is increased,” Liu says. “For example, a silica disk embedded with four plasmonic nanomotors attains the same rotation speed with only half of the laser power applied as a disk embedded with a single motor.”

The nanoscale size of this new light mill makes it ideal for powering NEMS, where the premium is on size rather than efficiency. Generating relatively powerful torque in a nanosized light mill also has numerous potential biological applications, including the controlled unwinding and rewinding of the DNA double helix. When these light mill motors are structurally optimized for efficiency, they could be useful for harvesting solar energy in nanoscopic systems.

“By designing multiple motors to work at different resonance frequencies and in a single direction, we could acquire torque from the broad range of wavelengths available in sunlight,” Liu says.

This research was supported by DOE’s Office of Science.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

For more information about the research of Xiang Zhang visit http://xlab.me.berkeley.edu/xlabnews.htm

For more information about the Berkeley Nano-scale Science and Engineering Center visit http://www.sinam.org/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>