Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-optics: Light moves in the right direction

12.09.2013
An experimental demonstration of light scattering controlled by silicon nanoparticles augurs well for the development of integrated optical circuits

Optical fibers are now delivering ultrafast internet connections to homes across the world. By replacing electronics-based technologies with architectures that process pulses of light, a similar leap in speed might also be possible for other forms of information handling.


Researchers can make a single silicon nanoparticle forward- or backward-scatter different colors of light, as shown in the direction denoted by ‘K’.

Copyright : 2013 A*STAR Data Storage Institute

To realize this potential, scientists must first develop novel devices that are capable of controlling the flow of light at the nanometer scale.

Such a device may now be within reach. Yuan Hsing Fu at the A*STAR Data Storage Institute and co]workers have demonstrated a unique optical effect in nanoparticles that allows them to control the direction in which visible light scatters1.

Miniaturization is key to the success of modern-day electronics: complicated circuitry must be made to fit into portable devices. Likewise, the hardware for processing optical signals must also be miniaturized. In this field, known as photonics, the design of optical components requires an entirely new approach.

The effect demonstrated by Fu and co-workers reveals how nanoparticles can be used to scatter light controllably in the visible spectral range. The researchers first designed a method to measure the scattering, and then fired light at tiny spheres of silicon. When the beam hit a sphere, some scattered backward and some scattered forward. The researchers also showed that it is possible to control the ratio of movement in the two directions by changing the diameter of the nanosphere.

Using silicon spheres with diameters of between 100 and 200 nanometers, the team observed that the amount of forward-scattered light varied from being roughly equal to the amount that was backward-scattered to being six times more intense. They also found that the effect could split the light according to wavelength: for example, nanoparticles of a particular size that backscattered predominantly green light also forward scattered mainly yellow radiation (see image).

The researchers chose silicon over the more conventional choice of a metal such as gold because it reduces energy loss and can influence both the electric and magnetic components of light. The epreferentialf scattering of radiation arises because of the mutual interaction between the electric and magnetic resonances of the nanosphere.

This effect is analogous to that of a radio-frequency antenna. gThe experimental proof of such relatively simple nano-optical systems with both an electric and magnetic response in the optical spectral range could pave the way to scaling the optical nano-antenna concept down to a single nanoparticle,h says Fu. Optical nanoscale antennas could be useful for improving solar cells and might form a crucial building block for integrated optical circuits.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References

Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Lukfyanchuk, B. Directional visible light scattering by silicon nanoparticles. Nature Communications 4, 1527 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6743
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>