Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-optics: Light moves in the right direction

12.09.2013
An experimental demonstration of light scattering controlled by silicon nanoparticles augurs well for the development of integrated optical circuits

Optical fibers are now delivering ultrafast internet connections to homes across the world. By replacing electronics-based technologies with architectures that process pulses of light, a similar leap in speed might also be possible for other forms of information handling.


Researchers can make a single silicon nanoparticle forward- or backward-scatter different colors of light, as shown in the direction denoted by ‘K’.

Copyright : 2013 A*STAR Data Storage Institute

To realize this potential, scientists must first develop novel devices that are capable of controlling the flow of light at the nanometer scale.

Such a device may now be within reach. Yuan Hsing Fu at the A*STAR Data Storage Institute and co]workers have demonstrated a unique optical effect in nanoparticles that allows them to control the direction in which visible light scatters1.

Miniaturization is key to the success of modern-day electronics: complicated circuitry must be made to fit into portable devices. Likewise, the hardware for processing optical signals must also be miniaturized. In this field, known as photonics, the design of optical components requires an entirely new approach.

The effect demonstrated by Fu and co-workers reveals how nanoparticles can be used to scatter light controllably in the visible spectral range. The researchers first designed a method to measure the scattering, and then fired light at tiny spheres of silicon. When the beam hit a sphere, some scattered backward and some scattered forward. The researchers also showed that it is possible to control the ratio of movement in the two directions by changing the diameter of the nanosphere.

Using silicon spheres with diameters of between 100 and 200 nanometers, the team observed that the amount of forward-scattered light varied from being roughly equal to the amount that was backward-scattered to being six times more intense. They also found that the effect could split the light according to wavelength: for example, nanoparticles of a particular size that backscattered predominantly green light also forward scattered mainly yellow radiation (see image).

The researchers chose silicon over the more conventional choice of a metal such as gold because it reduces energy loss and can influence both the electric and magnetic components of light. The epreferentialf scattering of radiation arises because of the mutual interaction between the electric and magnetic resonances of the nanosphere.

This effect is analogous to that of a radio-frequency antenna. gThe experimental proof of such relatively simple nano-optical systems with both an electric and magnetic response in the optical spectral range could pave the way to scaling the optical nano-antenna concept down to a single nanoparticle,h says Fu. Optical nanoscale antennas could be useful for improving solar cells and might form a crucial building block for integrated optical circuits.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References

Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Lukfyanchuk, B. Directional visible light scattering by silicon nanoparticles. Nature Communications 4, 1527 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6743
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>