Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Measurement in the 3rd Dimension

07.07.2009
PTB develops micro and nano coordinate measuring instrument for 3D objects

From the motion sensor to the computer chip - in many products of daily life components are used whose functioning is based on smallest structures of the size of thousandths - or even millionths - of millimetres.

These micro and nano structures must be manufactured and assembled with the highest precision so that in the end, the overall system will function smoothly. Thereby, details are important - and therefore scientists at the Physikalisch-Technische Bundesanstalt (PTB) have developed a metrological scanning probe microscope into a micro and nano coordinate measuring instrument.

This now allows dimensional quantities with nanometer resolution also to be measured on three-dimensional objects in an extraordinarily large measurement range of 25 mm x 25 mm x 5 mm. The new device is already extensively being used at PTB - to a large part for calibration orders from industry and research.

The micro probe used in the micro-nano CMM measures the form and the spacing of two reference spheres with diameters of two millimetres each. The figure shows a survey of the system and the proportions of measuring probe and measurement object in detail.

The picture can be downloaded as a jpg file. Often, such small dimensions can be grasped only when they are transferred to everyday life. If we assume, for example, that someone lost a cube of sugar within an area of 25 square kilometres - the new micro and nano coordinate measuring instrument would not only be able to find it, but it would also be able to determine its exact position and shape. This does not only apply to plane surfaces, but also to three-dimensional landscapes, for example if the cube of sugar were stuck to a steep wall.

As increasingly, components with structures in the micro- and nanometer range are being used in industry, dimensional metrology on such structures is becoming increasingly important. To meet the increasing requirements for 3D measurements of micro and nano structures, 3D measuring probes newly developed at PTB were incorporated in a metrological scanning probe microscope based on a commercial nano-positioning system with integrated laser displacement sensors of the company SIOS Messtechnik GmbH. The new functionalities given by the measuring probe and the software extend the scanning probe microscope to a metrological micro/nano coordinate measuring machine (CMM) which also allows 3D measurements conforming to standards to be performed on micro and nano structures.

International intercomparisons on step-height standards and lattice structures have shown that the measuring system is worldwide one of the most precise of its kind. For step heights, measurement uncertainties in the subnanometer range - and for measurements of the mean structure spacing on extensive lattice standards even in the range of 10 picometers - have been achieved and confirmed in comparison with optical diffraction measurements.

The new measuring instrument is available for dimensional precision measurements with nm resolution on 3D micro and nano structures such as micro gears, micro balls, hardness indenters and nano lattice standards as well as for comparisons of measures; moreover, it serves as a platform for research and development tasks. It is an important link between nano, micro and macro coordinate metrology.

Contact:
Dr. Gaoliang Dai, PTB Working Group 5.25 Scanning Probe Metrology,
Tel.: +49531 592-5127,
e-mail: gaoliang.dai@ptb.de

Dr. Gaoliang Dai | EurekAlert!
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>