Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Measurement in the 3rd Dimension

07.07.2009
PTB develops micro and nano coordinate measuring instrument for 3D objects

From the motion sensor to the computer chip - in many products of daily life components are used whose functioning is based on smallest structures of the size of thousandths - or even millionths - of millimetres.

These micro and nano structures must be manufactured and assembled with the highest precision so that in the end, the overall system will function smoothly. Thereby, details are important - and therefore scientists at the Physikalisch-Technische Bundesanstalt (PTB) have developed a metrological scanning probe microscope into a micro and nano coordinate measuring instrument.

This now allows dimensional quantities with nanometer resolution also to be measured on three-dimensional objects in an extraordinarily large measurement range of 25 mm x 25 mm x 5 mm. The new device is already extensively being used at PTB - to a large part for calibration orders from industry and research.

The micro probe used in the micro-nano CMM measures the form and the spacing of two reference spheres with diameters of two millimetres each. The figure shows a survey of the system and the proportions of measuring probe and measurement object in detail.

The picture can be downloaded as a jpg file. Often, such small dimensions can be grasped only when they are transferred to everyday life. If we assume, for example, that someone lost a cube of sugar within an area of 25 square kilometres - the new micro and nano coordinate measuring instrument would not only be able to find it, but it would also be able to determine its exact position and shape. This does not only apply to plane surfaces, but also to three-dimensional landscapes, for example if the cube of sugar were stuck to a steep wall.

As increasingly, components with structures in the micro- and nanometer range are being used in industry, dimensional metrology on such structures is becoming increasingly important. To meet the increasing requirements for 3D measurements of micro and nano structures, 3D measuring probes newly developed at PTB were incorporated in a metrological scanning probe microscope based on a commercial nano-positioning system with integrated laser displacement sensors of the company SIOS Messtechnik GmbH. The new functionalities given by the measuring probe and the software extend the scanning probe microscope to a metrological micro/nano coordinate measuring machine (CMM) which also allows 3D measurements conforming to standards to be performed on micro and nano structures.

International intercomparisons on step-height standards and lattice structures have shown that the measuring system is worldwide one of the most precise of its kind. For step heights, measurement uncertainties in the subnanometer range - and for measurements of the mean structure spacing on extensive lattice standards even in the range of 10 picometers - have been achieved and confirmed in comparison with optical diffraction measurements.

The new measuring instrument is available for dimensional precision measurements with nm resolution on 3D micro and nano structures such as micro gears, micro balls, hardness indenters and nano lattice standards as well as for comparisons of measures; moreover, it serves as a platform for research and development tasks. It is an important link between nano, micro and macro coordinate metrology.

Contact:
Dr. Gaoliang Dai, PTB Working Group 5.25 Scanning Probe Metrology,
Tel.: +49531 592-5127,
e-mail: gaoliang.dai@ptb.de

Dr. Gaoliang Dai | EurekAlert!
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>