Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Beaker Offers Insight Into the Condensation of Atoms

21.01.2015

An international team of physicists has succeeded in mapping the condensation of individual atoms, or rather their transition from a gaseous state to another state, using a new method. Led by the Swiss Nanoscience Institute and the Department of Physics at the University of Basel, the team was able to monitor for the first time how xenon atoms condensate in microscopic measuring beakers, or quantum wells, thereby enabling key conclusions to be drawn as to the nature of atomic bonding. The researchers published their results in the journal Nature Communications.

The team headed by Professor Thomas Jung, which consists of researchers from the Swiss Nanoscience Institute, Department of Physics at the University of Basel and the Paul Scherrer Institute, developed a method enabling the condensation of individual atoms to be mapped on a step by step basis for the first time. The researchers allowed atoms of the noble gas xenon to condensate in quantum wells and monitored the resulting accumulations using a scanning tunneling microscope.


Monitoring of the condensation of xenon: Depicted in scanning tunneling microscopy are three different quantum wells that contain one, two and three xenon atoms.

Quantum wells as beakers

The autonomous organization of specifically 'programmed' molecules facilitates the creation of a porous network on a substrate surface – these are the quantum wells used as measuring beakers with a specifically defined size, shape and atomic wall and floor structure. The atoms' freedom of movement is restricted in the quantum wells, allowing the arrangement of the atoms to be closely monitored and mapped depending on the composition.

With this data, the researchers were able to show that the xenon atoms always arrange themselves according to a certain principle. For example, some units consisting of four atoms are only formed when there are at least seven atoms in the quantum well. And if there are twelve atoms in the quantum well, this results in the creation of three highly stable four-atom units.

Conclusions about the nature of bonding

The images and structures of nano-condensates recorded for the first time allow key conclusions to be drawn as to the nature of the physical bonds formed by the xenon atoms. "But this system is not restricted exclusively to noble gases," says Sylwia Nowakowska, lead author of the publication. "We can also use it to research other atoms and the way that they bond." As the newly developed method accurately maps atomic bonding and determines the stability of the various states, it can also be used to verify theoretical calculations about bonds.

The results of the study are based on a collaboration between researchers from Switzerland, Brazil, Sweden, Germany and the Netherlands, and were published in the current issue of the scientific journal Nature Communications.

Further information
Prof. Thomas Jung, Swiss Nanoscience Institute (SNI), University of Basel, cell:+41 79 222 45 36 , email : thomas.jung@psi.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>