Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nano-Based Process Simplifies Magnetic Manufacture

28.09.2011
Scientists at the University of Massachusetts Amherst report that for the first time they have designed a much simpler method of preparing ordered magnetic materials than ever before, by coupling magnetic properties to nanostructure formation at low temperatures.

The innovative process allows them to create room-temperature ferromagnetic materials that are stable for long periods more effectively and with fewer steps than more complicated existing methods. The approach is outlined by UMass Amherst polymer scientist Gregory Tew and colleagues in the Sept. 27 issue of Nature Communications.

Tew explains that his group’s signature improvement is a one-step method to generate ordered magnetic materials based on cobalt nanostructures by encoding a block copolymer with the appropriate chemical information to self-organize into nanoscopic domains. Block copolymers are made up of two or more single-polymer subunits linked by covalent chemical bonds.

The new process delivers magnetic properties to materials upon heating the sample once to a relatively low temperature, about 390 degrees (200 degrees Celsius), which transforms them into room-temperature, fully magnetic materials. Most previous processes required either much higher temperatures or more process steps to achieve the same result, which increases costs, Tew says.

He adds, “The small cobalt particles should not be magnetic at room temperature because they are too small. However, the block copolymer’s nanostructure confines them locally which apparently induces stronger magnetic interactions among the particles, yielding room-temperature ferromagnetic materials that have many practical applications.”

“Until now, it has not been possible to produce ordered, magnetic materials via block copolymers in a simple process,” Tew says. “Current methods require multiple steps just to generate the ordered magnetic materials. They also have limited effectiveness because they may not retain the fidelity of the ordered block copolymer, they can’t confine the magnetic materials to one domain of the block copolymer, or they just don’t produce strongly magnetic materials. Our process answers all these limitations.”

Magnetic materials are used in everything from memory storage devices in our phones and computers to the data strips on debit and credit cards. Tew and colleagues have discovered a way to build block copolymers with the necessary chemical information to self-organize into nanoscopic structures one millionth of a millimeter thin, or about 50,000 times thinner than the average human hair.

Earlier studies have demonstrated that block copolymers can be organized over relatively large areas. What makes the UMass Amherst research group’s results so intriguing, Tew says, is the possible coupling of long-range organization with improved magnetic properties. This could translate into lower-cost development of new memory media, giant magneto-resistive devices and futuristic spintronic devices that might include “instant on” computers or computers that require much less power, he points out.

He adds, “Although work remains to be done before new data storage applications are enabled, for example making the magnets harder, our process is highly tunable and therefore amendable to incorporating different types of metal precursors. This result should be interesting to every scientist in nanotechnology because it shows conclusively that nano-confinement leds to completely new properties, in this case room temperature magnetic materials.”

“Our work highlights the importance of learning how to control a material’s nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room-temperature magnets.”

“Our work highlights the importance of learning how to control a material’s nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room temperature magnets.” As part of this study, the UMass Amherst team also demonstrated that using a block copolymer or nanoscopic material results in a material that is magnetic at room temperature. By contrast, using a homopolymer, or unstructured material, leads only to far less useful non- or partial-magnetic materials.

Gregory N. Tew | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>