Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-aquarium opens up a new realm of research into microorganisms

22.02.2010
A microchip fabricated with femtosecond lasers at RIKEN allows the rare observation of microalgae behavior

Microalgae are photosynthetic organisms that appeared on Earth more than three billion years ago. Diatoms, Euglena and other members of this family typically inhabit in the sea or fresh water, and possess a very simple, unicellular form. Some of them are even able to move using tiny appendages known as flagella.

Perhaps the easiest and simplest example for use in scientific experiments for school children, algae are also in high demand for next-generation industrial research and development as a raw material for the production of biofuel.

At RIKEN, researchers are unraveling a variety of hidden functions of single-cell, flagellated algae that swim in fresh water using a newly developed ‘nano-aquarium’. Far from an ordinary fish tank for ornamental purposes, the nano-aquarium is actually a tiny microchip; a glass plate just five square millimeters in size embedded with flow channels and micro-devices. The algae, which normally swim around at lightning speed, move within the tightly controlled channels, and sometimes are given physical stimuli using a movable micro-needle in order to observe their response. Such nano-manipulation techniques provide great assistance for analyzing the detailed mechanisms of algae using RIKEN’s cutting-edge optical microscopes, opening up a new realm of biological and evolutional research on these ancient microorganisms.

The great potential of algae

The nano-aquarium project was initiated by Hiroyuki Kawano, a research scientist specialized in laser physics in the Laboratory for Cell Function Dynamics of the RIKEN Brain Science Institute in Wako, Saitama. Kawano joined the laboratory in 2003 to take advantage of his expertise gained at the Laser Technology Laboratory (headed by Katsumi Midorikawa) of the RIKEN Advanced Science Institute, also in Wako. The Laboratory for Cell Function Dynamics, headed by Atsushi Miyawaki, is at the world’s forefront in the development of fluorescence proteins and related optical technologies.

In 2005, Miyawaki’s laboratory created a high-performance video microscope for in vivo observation of neurons in collaboration with Olympus and Kinki University. Ikuko Ishikawa, a former professor of Tokyo Gakugei University and specialist in algal physiology, was invited to act as a research scientist on the project with the aim of utilizing micro-organisms as a sample to maximize the performance of the new device. However, “soon after we started experiments we found it very difficult to capture clear images of microalgae even with our cutting-edge microscope because some algae move around too fast to be observed, and others make unexpected movements,” Ishikawa says. “So, I consulted with my colleagues to see whether we can control their behavior,” Kawano adds.

The result of those consultations was the nano-aquarium project, which was awarded funding under the category of ‘challenging research’ from the President’s Fund. The project was kicked off in 2006 by four researchers—Kawano and Ishikawa from the Laboratory for Cell Function Dynamics, and Koji Sugioka, a senior research scientist, and Yasutaka Hanada, a special postdoctoral researcher, from the Laser Technology Laboratory.

Direct fabrication of three-dimensional voids using femtosecond lasers
The development of the nano-aquarium microchip would not have been achieved without Sugioka’s femtosecond laser expertise. Ultrashort light pulses can be focused into a spot with a diameter of just 0.3 micrometers, equivalent to the length of a virus. These ultrashort pulses of light make it possible to achieve the processing precision necessary to fabricate the fine channels and voids that make up the nano-aquarium. Longer pulses of light, such as those produced by conventional lasers, cause heating in the materials leading to thermal expansion and cracking. Femtosecond lasers are therefore becoming known as the next-generation technology for shaping glass, semiconductor and even diamond with nanoscale precision.

Around 2002, Sugioka started creating three-dimensional tunnels inside a glass plate by shifting the focal point of laser beam a fraction at a time. The fabrication of voids is completed by immersing the patterned glass plate in acid solvent, which etches away the glass around the tunnels. The manufacturing process for the nano-aquarium differs from the process used to fabricate common microfluidic chips, which are fabricated using semiconductor-etching technology and are used to control and analyze the biological and chemical properties of a tiny amount of fluid sample.

Based on his laser-processing expertise, Sugioka joined hands with Hanada to develop the nano-aquarium. Sugioka recalls that one of the greatest technical challenges was to create channels with a square cross-section in order to give the observer a clearer view of a sample movement under the microscope. Hanada also developed a built-in, movable needle that researchers can use to stimulate the algae samples. “By trial and error I adjusted the beam strengths, exposure time and pulse length to process the nano-device in just the right way,” he says. Sugioka adds that they can even make a micro-wheel to generate water flow in the channel.

Unraveling the secrets of algae

Kawano’s team has been developing a number of different microchips, each tailored to a different sample, because the design of channels and microdevices determines the angle of observation. “It was fascinating to see directly and clearly how chloroplasts get assembled in the middle of algae when stimulated with a micro-needle,” Ishikawa says. Kawano has recently discovered that another type of algae uses its flagella in a different manner to what had been long believed. “We could confirm the finding because we made it swim vertically in the H-shaped channel. Other researchers would have no choice but to observe it two-dimensionally in a petri dish,” Kawano notes.

The team published a joint paper1 in 2008, and although the support of the President’s Fund ended in March 2009, the researchers continue to work together to polish the quality of the microchips and uncover more truths about algae using their own research funding. “I am grateful for our team’s enthusiasm for collaboration,” Ishikawa says. “Thanks to them, we have now entered a new stage in the dynamic and beautiful world of colorful microorganisms.”

Journal information

1. 1. Hanada, Y., Sugioka, K., Kawano, H., Ishikawa, I. S., Miyawaki, A. & Midorikawa, K. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomedical Microdevices 10, 403-410 (2008).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/grants/6208
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>