Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From myth to reality: Photos prove triple rainbows exist

06.10.2011
Single rainbows are inspiring, double rainbows are rare, but tertiary rainbows have been elusive until a meteorologist provided guidelines that showed how to find them

Few people have ever claimed to see three rainbows arcing through the sky at once. In fact, scientific reports of these phenomena, called tertiary rainbows, were so rare—only five in 250 years—that until now many scientists believed sightings were as fanciful as Leprechaun's gold at a rainbow's end.

These legendary optical rarities, caused by three reflections of each light ray within a raindrop, have finally been confirmed, thanks to photographic perseverance and a new meteorological model that provides the scientific underpinnings to find them. The work is described in a series of papers in a special issue published this week in the Optical Society's (OSA) journal Applied Optics.

In addition to the confirmed photo of a tertiary rainbow, the optical treasure hunt went one step further, as revealed in another photo that shows the shimmering trace of a fourth (quaternary) rainbow.

Raymond Lee, a professor of meteorology at the U.S. Naval Academy, did not snap those pictures, but he did make them possible. One year ago, Lee predicted how tertiary rainbows might appear and challenged rainbow chasers to find them.

Although staggeringly rare, tertiary and quaternary rainbows are natural products of the combination of refraction, dispersion, and reflection inside raindrops. These are the same processes that create all rainbows, yet they are taken to their most extreme to produce these higher order variants. Refraction is when sunlight bends as it moves from air into water and vice versa. (Such bending makes oars look bent when partially submerged.) Water droplets bend each of the colors in sunlight by a slightly different angle. This is called dispersion, and it separates the colors to create a rainbow.

Most of that multicolored light passes through the other side of the raindrop, but some is reflected. The raindrop's spherical curves concentrate those reflections at 138 degrees from the Sun. This concentrated light is bright enough to create a visible primary rainbow.

A double rainbow occurs because not all that light exits the raindrop. Some is reflected back into the raindrop and goes through the whole process again. Although this light is dimmer, sometimes it is bright enough to produce a secondary rainbow just outside the first.

A third series of reflections creates a tertiary rainbow. It is even dimmer than the secondary rainbow, and much harder to find because instead of forming away from the Sun, a tertiary rainbow forms around the Sun. To see it, observers have to look into the Sun's glare.

This may be why only five scientifically knowledgeable observers had described tertiary rainbows during the past 250 years.

Lee reviewed each description. He eliminated one questionable account and found common elements in the others. All described tertiary rainbows that appeared for a few seconds against a dark background of clouds about 40 degrees from a brightly shining sun.

Along with colleague Philip Laven, Lee used a mathematical model to predict what conditions might produce visible tertiaries. First, they needed dark thunderclouds and either a heavy downpour or a rainstorm with nearly uniformly sized droplets. Under these conditions, if the Sun broke through the clouds, it could project a tertiary rainbow against the dark clouds nearby. The contrasting colors would make the dim tertiary visible.

When Lee presented his findings at last year's International Conference on Atmospheric Optics, it sparked heated discussion. Some scientists insisted that past descriptions were wrong and that tertiaries were too dim to see in the Sun's glare.

One attendee, Elmar Schmidt, an astronomer at Germany's SRH University of Applied Sciences in Heidelberg and a rainbow chaser, took the guidelines as a challenge. He alerted likeminded amateurs. Since then, Michael Grossman and Michael Theusner have snapped photos of tertiary rainbows. One photo even shows a quaternary rainbow, and both images, which underwent only minimal image processing to improve the contrast under these challenging photographic conditions, appear in the same Applied Optics special issue as Lee and Laven's paper.

The day Grossman photographed the tertiary rainbow, he first recalled seeing a double rainbow. When the rain intensified, he knew he had to turn toward the Sun. "It is really exaggerated to say that I saw it, but there seemed to be something," he says. The pictures he snapped in the rain were the first to show a tertiary rainbow.

Of the noteworthy discovery, "it was as exciting as finding a new species," Lee says.

Papers:

Visibility of natural tertiary rainbows, Raymond L. Lee, Jr. and Philip Laven, Applied Optics, Vol. 50, Issue 28, pp. F152-F161 (2011) This research received support from National Science Foundation grants AGS-0914535 and AGS-0540896.

Photographic evidence for the third-order rainbow, Michael Grossmann, Elmar Schmidt, and Alexander Haussmann, Applied Optics, Vol. 50, Issue 28, pp. F134-F141 (2011)

Photographic observation of a natural fourth-order rainbow, Michael Theusner, Applied Optics, Vol. 50, Issue 28, pp. F129-F133 (2011)

EDITOR'S NOTE: High-resolution images of the tertiary and quaternary rainbows and copies of the papers are available to members of the media upon request. Please contact Angela Stark, astark@osa.org.

About Applied Optics

Applied Optics is the Optical Society's most widely read journal. Published three times each month, the journal reports significant optics applications in areas such as optical testing and instrumentation, medical optics, holography, optical neural networks, LIDAR and remote sensing, laser materials processing, and more. Each issue of Applied Optics contains content from three divisions of editorial scope: Optical Technology; Information Processing; and Lasers, Photonics, and Environmental Optics. For more information, visit www.OpticsInfoBase.org/AO.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>