Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of twin quasar brightness revealed

29.01.2009
Variations in the brightness of the Q0957+561 quasar, also known as the “twin quasar” due to its duplicated image on Earth, are intrinsic to the entity itself and not caused by the gravitational effects of possible planets or stars from a far away galaxy. This is the conclusion of a study carried out by Spanish researchers resolving a mystery that has intrigued astronomers for the past 30 years.

The quasar Q0957+561, some 9 billion light years away in the Ursa Major constellation, was discovered in 1979 by an Anglo-American team. Since then scientists have managed to explain why two images are observed of the same object -separated by a little less than two thousandths of a degree in the sky-, but up until now had not been able to explain the origins of the “rapid” (lasting several months) variations in their brightness.

“Just as the force of the Earth's gravity determines the movement of a rocket or the moon, the concentration of a vast mass (such as a cluster of galaxies situated between Q0957+561 and the Earth) is capable of substantially deviating rays of light from the far away quasar and producing two images of it, A and B”, so SINC was told by Luis J. Goicoechea, from the Gravitational Lenses Group at the University of Cantabria, Spain, and one of the authors of the study published in Astronomy & Astrophysics. This phenomenon is known as “gravitational lensing” and is similar to mirages seen in a desert or double vision that short-sighted people have.

However, the researcher explained that the matter that concerned astronomers, after the discovery of Q0957+561 30 years ago, was knowing whether fluctuations in the brightness of its two images were caused by intrinsic variations in the brightness of the quasar or, on the other hand, produced by the gravity of planets or stars found in a galaxy’s halo situated in the centre of the cluster which acts as a gravitational lens. The temporary scales of the fluctuations (various months) suggested to scientists the possible existence of planets forming this galaxy’s dark matter.

“It seems the attractive hypothesis of a large population of dark objects with planetary mass in the galaxy’s halo has disappeared, since the variability found in our experiment is of intrinsic origin to the quasar”, commented Goicoechea. The researchers have confirmed that fluctuations in the brightness detected in image A were repeated 14 months later in Image B. If they had been caused by the gravity of planets or stars, the fluctuations in image A would not have been exactly replicated in image B.

To measure the brightness of the two images of the twin quasar, the astronomers used the robotic telescope ‘Liverpool’, located in La Palma (Canary Islands). The study focused on the analysis of the blue and red colours in the light, with the results showing that over the months the maximum width of the brightness varied around 10% in relation to the average. Those fluctuations were also observed in image B approximately 14 months after being detected in A.

“This delay between components has been determined with a relative error of 0.5%, i.e. with great precision”, Goicoechea pointed out. Scientists have also observed that the quasar does not simultaneously emit all the optic radiation at the same time, emitting firstly the blue light then the red. In image A they measured a delay of around four days between a very prominent variation of the blue brightness and the corresponding fluctuation of the red brightness.

Presence of a supermassive black hole

The researchers believe that most of these variations are due to a disk of hot gas situated in the heart of Q0957+561. This quasar is one of the most studied, and astronomers believe that inside it there is a supermassive black hole, with a mass equivalent to more than one billion suns, around which the disc of gas would be situated. “This structure emits the optic radiation observed and feeds off the supermassive black hole”, Goicoechea indicated.

The astronomer explained it as follows: “Perpendicularly to the plane of the disc there is a jet, which was detected in radio waves and ultraviolet rays, and at a certain height there are high energy fluctuations, which firstly reach the most internal and hottest area of the disc (responsible for blue radiation), and then a little later, the most external and coldest part (where red radiation is generated)”. The regions of the disc are therefore radiated, and a part of that radiation is reflected while the other is reprocessed and re-emitted with less energy. This phenomenon is known as “reverberation” and several very recent studies indicate that it could be produced in a large number of quasars.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>