Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of Turbulent Density Fluctuations Explained

22.10.2009
Scientists at The University of Alabama in Huntsville have developed a three-dimensional simulation model to understand behavior of interplanetary charged particles in space.

Physics professors Dastgeer Shaikh and Gary Zank of the university’s Center for Space Plasma and Aeronomic Research and Department of Physics said the model explains how density of the interplanetary particles varies in time and space. Remarkably, the distribution of scale sizes of the density fluctuations is observed to satisfy a universal law called the Kolmogorov-spectrum.

The researchers noted that interplanetary space surrounding Earth is filled up by randomly moving charged and uncharged particles. These particles originate essentially from stars like our Sun or other nearby stars and are accelerated through interplanetary space. These are real “micro-probes” that tell us about distance, composition and many important aspects of the distant cosmological objects such as neighboring stars, galaxies and massive astrophysical clouds.

“From the behavior of these particles in space, it is possible to know the extent of the physical universe,” they explained. “We provide a simpler explanation of why should particle density follow a Kolmogorov-spectrum. The interplanetary space is like water or air surrounding us. The charged particles are tied to the mass-less rope of magnetic field lines and move around in water in a random manner. Something similar to “cream in a cup of coffee” or particles of ‘baby talcum powder’ spread on the surface of stirred water that convects the particles of powder along with the water flow. We find that these particles follow a Kolmogorov-spectrum. We are trying to understand their motion statistically.”

NASA's Voyager 2 spacecraft, cruising in the outer space for nearly 30 years, has tracked down the interplanetary particle density from our Sun to a distance up to 100 times the distance between the Sun and Earth. That is 93.7 million miles multiplied by 100. “It was found that the particle density varies with distance by a Kolmogorov-spectrum. But one of the major hurdles in understanding this spectrum is interplanetary turbulence that makes the particle's trajectory random in space and time,” the scientists said.

The original theoretical effort behind this model was laid down in early 1990s by Dr. Zank, who had put forward "a truly amazing hypothesis" that related the density to velocity of these turbulent particles, according to Dr. Shaikh. “It took us nearly 20 years to computationally realize the truth behind Zank's model. We run our higher resolution computational model on San Diego supercomputer (256 processors) to arrive at this conclusion. Our model is also consistent with Voyager's observations.”

Drs. Zank and Shaikh said it’s important to know correct statistical behavior of the interplanetary particle density. “Some of the techniques (like angular broadening) are based on density variations to measure the distance of stellar objects from Earth. Precise measurement of density field is critical to determine exact location, age, and composition of the stellar bodies,” they said.

Their research will appear in the November issue of the Royal Astronomical Society's journal.

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>