Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mystery of protein folding

15.08.2012
Nobel laureate Ahmed H. Zewail summarizes his insights into the physical backgrounds of protein folding

Living subjects are very complex systems and, at the same time, stunningly robust and accommodative. The secret of success are their proteins which build up the cells of the organisms, act as cleaners, messengers, transporter, motors, and fulfill much more jobs.



How proteins are genetically coded and how their linear chains of amino acids are put together, is in principle well known. Yet, this is not the full story. Before proteins can do their jobs, they have to be folded in a proper way. This is important because the shape determines the function of the protein. And misfolded proteins can cause severe health disorders, such as Morbus Alzheimer. The cause seems to be that they tend to aggregate into so called amyloid plaques.

It is still impossible to predict from the amino acid sequence how the corresponding protein will fold. New insights into the principles or protein folding could enhance the understanding of amyloid based diseases. In addition, protein drugs could be custom tailored for special target molecules.

Nobel laureate Ahmed H. Zewail and his co-worker Milo M. Lin summarize their insights into the physical backgrounds of protein folding in the latest issue of Annalen der Physik (www.ann-phys.org) as part of the renowned Einstein Lectures. This series, established in 2005 in the course of the Einstein Year, comprises articles of reputable scientists such as Nobel laureates Theodor Hänsch, Roy Glauber and Peter Grünberg. Now, Zewail and Lin report about physical views of protein folding.

Many proteins are able to fold themselves quickly and properly into a complicated conformation without any help of a cellular “folding apparatus”. How they achieve this is still a mystery. Zewail and Lin at the California Institute of Technology in Pasadena (USA) want to solve this “protein folding problem“ by looking at the basic physics behind the complex world of proteins.

Besides thermodynamics which control the stability of the possible protein conformers, kinetic aspects play a key role as they rule the mechanisms and time scales of the folding process. A polypeptide chain could spend more time than the age of the universe “trying” all of its possible conformers to find its native one. In reality, folding never takes more than a few seconds.

Using ultrashort laser pulses, Zewail’s team was able to determine how fast the first twist of an alpha-helix is formed. Real-time investigation of chemical reactions with ultrashort laser pulses is one of Zewail’s specialities; his research in this area had been acknowledged with the donation of the Nobel prize in 1999.

The folding of the first helix twist is the fastest step of protein folding; it therefore determins the general speed limit of folding velocity. Without having to know the details of all mechanisms involved, the scientists were able to calculate this general limit with the help of simple analytical models.

The models used are based on a consideration of the torsion angles in the protein backbone plotted in a so called Ramachandran diagram.

Sterically forbidden, restricted and free regions are distinguished. In addition, the polypeptide chain was calculated as a three-dimensional lattice thereby arranging the chain in a way that maximizes contacts between hydrophobic residues reflecting their shielding from the physiological aqueous environment. The polar sidegroups, instead, have to point outwards. This corresponds to the natural conformation of proteins.

Based on their calculations, Zewail and his colleague argue that hydrophobic interactions between non-polar amino acid residues are sufficient to fold a polypeptide chain into its native shape in a reasonable time. But this works only if the chain is not longer than ca. 200 amino acids. This could be an explanation for the observation that proteins are built up of domains: Although proteins, in general, may consist of more than 1000 amino acids, they are often composed of domains of independently folding sub-parts. These domains are on average 100 amino acids long, most of them being less than 200. This would correspond to the theoretically determined length regime for which hydrophobic interactions are sufficient for fast folding.

Lin, M. M.; Zewail, A. H.: Ann. Phys. (Berlin) 524(8), 379-391 (2012)
In this issue: Ann. Phys. (Berlin), Vol.524, No. 8 (2012)
Founded in 1790, Annalen der Physik (AdP) is one of the world's most renowned physics journals with an over 220 years’ tradition of excellence. Based on the fame of seminal papers by Einstein, Planck, and many others, the journal is now tuned towards today's most exciting physics findings. Since 2012, AdP appears with fresh content, a new team, and with a brand-new look. The journal continues to cover all fields of physics starting from the fundamental aspects of nature to the forefront of applied physics. It now welcomes Rapid Research Letters (RRLs), original papers, and review articles. As a modern journal it supports video abstracts and additional online material. The new section "Physics Forum" reports about current highlights in AdP and about the historic relation of recent and ongoing research efforts in physics.
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
www.wiley.com
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399
ann-phys@wiley.com
www.ann-phys.org
www.wileyonlinelibrary.com

Regina Hagen | Wiley-VCH Verlag GmbH & Co. KGaA
Further information:
http://www.wiley.com

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>