Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of bat with an extraordinary nose solved

09.07.2009
A research paper co-written by a Virginia Tech faculty member explains a 60-year mystery behind a rare bat's nose that is unusually large for its species. The findings soon will be published in the scientific trade journal, Physical Review Letters.

The article, "Acoustic effects accurately predict an extreme case of biological morphology," by Z. Zhang, R. Müller, and S.N. Truong, details the adult Bourret's horseshoe bat (known scientifically as the "Rhinolophus paradoxolophus," meaning paradoxical crest), and it's roughly 9 millimeters in length nose.

The typical horseshoe bat's nose is half that long, said Rolf Mueller, an associate professor with the Virginia Tech mechanical engineering department and director for the Bio-inspired Technology (BIT) Laboratory in Danville, Va. "This nose is so much larger than anything else," among other bats of the region, he said.

Mueller's findings show that the bat uses its elongated nose to create a highly focused sonar beam. Bats detect their environment through ultrasonic beams, or sonar, emitted from their mouths -- or noses, as in the case of the paradoxolophus bat. The echoes of the sound wave convey a wealth of information on objects in the bat's environment. This bat from the remote rainforests of South East Asia received its name 58 years ago because of its mysterious trait.

Much like a flashlight with an adjuster that can create an intense but small beam of light, the bat's nose can create a small but intense sonar beam. Mueller and his team used computer animation to compare varying sizes of bat noses, from small noses on other bats to the large nose of the paradoxolophus bat. In what Mueller calls a perfect mark of evolution, he says his computer modeling shows the length of the paradoxolophus bat's nose stops at the exact point the sonar beam's focal point would become ineffective.

"By predicting the width of the ultrasonic beam for each of these nose lengths with a computational method, we found that the natural nose length has a special value: All shortened noses provided less focus of the ultrasonic beam, whereas artificially elongated noses provided only negligible additional benefits," Mueller said. "Hence, this unusual case of a biological shape can be predicted accurately from its physical function alone."

The findings with the paradoxolophus bat are part of a larger study of approximately 120 different bat species and how they use sonar to perceive their environment. Set to finish in February 2010, it is hoped the study's focus on wave-based sensing and communication in bats will help spur groundwork for innovations in cell phone and satellite communications, as well as naval surveillance technology.

Mueller worked on the study with engineers and scientists from China's Shandong University, where he held a professorship when the research project began, and the Vietnamese Academy of Sciences. The article will appear in Physical Review Letters' print edition on July 17 and on the Web site on July 14.

Mueller has focused much of his research career in bio-inspired technology studying bats. He received a Ph.D. in 1998 at the University of Tuebingen, Germany, where he developed computational models for the biosonar system of bats. During postdoctoral research at Yale University, he worked on biosonar-inspired autonomous robots and statistical signal processing methods in natural outdoor environments. In 2000, he returned to Tuebingen University, where he built a lab to develop robots inspired by bats. In 2003, he joined The Maersk Institute of Production Technology at the University of Southern Denmark as an assistant professor, followed by a professorship at Shandong University. He joined the Virginia Tech faculty in 2008.

The College of Engineering (www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 5,700 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Learn more about Dr. Mueller at www.me.vt.edu/people/faculty/Mueller.html

Learn more about the Bio-inspired Technology Laboratory at www.ialr.org/research/bio-inspired-technology-laboratory

Steven Mackay | EurekAlert!
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>