Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious quantum forces unraveled

12.05.2010
MIT researchers find a way to calculate the effects of Casimir forces, offering a way to keep micromachines’ parts from sticking together.

Discovered in 1948, Casimir forces are complicated quantum forces that affect only objects that are very, very close together. They’re so subtle that for most of the 60-odd years since their discovery, engineers have safely ignored them. But in the age of tiny electromechanical devices like the accelerometers in the iPhone or the micromirrors in digital projectors, Casimir forces have emerged as troublemakers, since they can cause micromachines’ tiny moving parts to stick together.

MIT researchers have developed a powerful new tool for calculating the effects of Casimir forces, with ramifications for both basic physics and the design of microelectromechanical systems (MEMS). One of the researchers’ most recent discoveries using the new tool was a way to arrange tiny objects so that the ordinarily attractive Casimir forces become repulsive. If engineers can design MEMS so that the Casimir forces actually prevent their moving parts from sticking together — rather than causing them to stick — it could cut down substantially on the failure rate of existing MEMS. It could also help enable new, affordable MEMS devices, like tiny medical or scientific sensors, or microfluidics devices that enable hundreds of chemical or biological experiments to be performed in parallel.

Ghostly presence

Quantum mechanics has bequeathed a very weird picture of the universe to modern physicists. One of its features is a cadre of new subatomic particles that are constantly flashing in and out of existence in an almost undetectably short span of time. (The Higgs boson, a theoretically predicted particle that the Large Hadron Collider in Switzerland is trying to detect for the first time, is expected to appear for only a few sextillionths of a second.) There are so many of these transient particles in space — even in a vacuum — moving in so many different directions that the forces they exert generally balance each other out. For most purposes, the particles can be ignored. But when objects get very close together, there’s little room for particles to flash into existence between them. Consequently, there are fewer transient particles in between the objects to offset the forces exerted by the transient particles around them, and the difference in pressure ends up pushing the objects toward each other.

In the 1960s, physicists developed a mathematical formula that, in principle, describes the effects of Casimir forces on any number of tiny objects, with any shape. But in the vast majority of cases, that formula remained impossibly hard to solve. “People think that if you have a formula, then you can evaluate it. That’s not true at all,” says Steven Johnson, an associate professor of applied mathematics, who helped develop the new tools. “There was a formula that was written down by Einstein that describes gravity. They still don’t know what all the consequences of this formula are.” For decades, the formula for Casimir forces was in the same boat. Physicists could solve it for only a small number of cases, such as that of two parallel plates. Then, in 2006, came a breakthrough: MIT Professor of Physics Mehran Kardar demonstrated a way to solve the formula for a plate and a cylinder.

Calculating the incalculable

In a paper appearing this week in Proceedings of the National Academy of Sciences, Johnson, physics PhD students Alexander McCauley and Alejandro Rodriguez (the paper’s lead author), and John Joannopoulos, the Francis Wright Davis Professor of Physics, describe a way to solve Casimir-force equations for any number of objects, with any conceivable shape.

The researchers’ insight is that the effects of Casimir forces on objects 100 nanometers apart can be precisely modeled using objects 100,000 times as big, 100,000 times as far apart, immersed in a fluid that conducts electricity. Instead of calculating the forces exerted by tiny particles flashing into existence around the tiny objects, the researchers calculate the strength of an electromagnetic field at various points around the much larger ones. In their paper, they prove that these computations are mathematically equivalent.

For objects with odd shapes, calculating electromagnetic-field strength in a conducting fluid is still fairly complicated. But it’s eminently feasible using off-the-shelf engineering software.

“Analytically,” says Diego Dalvit, a specialist in Casimir forces at the Los Alamos National Laboratory, “it’s almost impossible to do exact calculations of the Casimir force, unless you have some very special geometries.” With the MIT researchers’ technique, however, “in principle, you can tackle any geometry. And this is useful. Very useful.”

Since Casimir forces can cause the moving parts of MEMS to stick together, Dalvit says, “One of the holy grails in Casimir physics is to find geometries where you can get repulsion” rather than attraction. And that’s exactly what the new techniques allowed the MIT researchers to do. In a separate paper published in March, physicist Michael Levin of Harvard University’s Society of Fellows, together with the MIT researchers, described the first arrangement of materials that enable Casimir forces to cause repulsion in a vacuum.

Dalvit points out, however, that physicists using the new technique must still rely on intuition when devising systems of tiny objects with useful properties. “Once you have an intuition of what geometries will cause repulsion, then the [technique] can tell you whether there is repulsion or not,” Dalvit says. But by themselves, the tools cannot identify geometries that cause repulsion.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>