Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious cosmic radio bursts found to repeat

03.03.2016

An international research team including astronomers from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, has discovered the first source of repeating bursts of radio waves which is located well beyond our Milky Way galaxy. Fast radio bursts (FRBs), lasting just a few thousandths of a second, have puzzled scientists since they were first reported nearly a decade ago. The findings indicate that these “fast radio bursts” come from an extremely powerful object which occasionally produces multiple bursts in under a minute. Their results are published in this week’s online edition of Nature.

“We’ve never before seen any FRB repeat, but to be sure we continued to monitor a previously discovered FRB over many months,” says Laura Spitler, lead author of the new paper and a postdoctoral researcher at the MPIfR. The observations were performed with the Arecibo radio telescope in Puerto Rico – the world’s largest radio telescope with a diameter of 305 meters.


The 305-m Arecibo telescope, the first telescope to see repeat FRB bursts from the same source.

Danielle Futselaar


The initially discovered “Burst 1” and 10 new bursts seen from the fast radio burst source FRB 121102. The bursts are shown as a function of radio observing frequency.

Paul Scholz (Fig. 2 in Spitler et al., Nature)

Until now most theories about the origin of these mysterious pulses have involved cataclysmic incidents that destroy their source – a star exploding in a supernova, for example, or a neutron star collapsing into a black hole. That changed last November, when McGill University PhD student Paul Scholz was sifting through results from these monitoring observations and found 10 more bursts. “The repeat signals were surprising – and very exciting,” Scholz says. “I knew immediately that the discovery would be extremely important in the study of FRBs.”

This finding suggests that these bursts must have come from an exotic object, such as a rotating neutron star having unprecedented power that enables the emission of extremely bright pulses, the researchers say. It is also possible that the finding represents the first discovery of a sub-class of the cosmic FRB population.

“Not only does this source repeat, but the brightness and spectra of the bursts also differs from those of other FRBs,” notes Laura Spitler. Additional evidence for multiple classes of FRBs also comes from a study to be published soon in Monthly Notices of the Royal Astronomical Society, which reports on the first FRBs with two peaks, found using the Parkes radio telescope in Australia. “The emission of two pulses separated by only a few thousandths of a second is most easily explained by extreme flaring in a neutron star,” explains Dr. David Champion, an astronomer at the MPIfR and the lead author of this study.

Intriguingly, the most likely implication of the new Arecibo finding – that the repeating FRB originates from a young extragalactic neutron star – is seemingly at odds with the results of a study published last week in Nature by another research team, where Bonn researchers were also involved. That paper suggested FRBs are related to cataclysmic events, such as short gamma-ray bursts, which cannot generate repeat events. Both findings together strongly imply that there are at least two different kinds of FRB sources.

In the future, the team hopes to learn more about the source through observations at other wavelength regimes. “We are going to compare our radio observations with observations from optical and X-ray telescopes,” says Jason Hessels, associate professor at the University of Amsterdam and the Netherlands Institute for Radio Astronomy as well as corresponding author of the Nature paper. “It’s an exciting time for FRB studies. You can learn something new with almost every new source”, he concludes.


Scientists from Max Planck Institute for Radio Astronomy involved in this research were Laura Spitler, the first author, Paulo Freire, Patrick Lazarus and Weiwei Zhu.

The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

The research was supported by grants from the European Research Council, the National Science and Engineering Council of Canada, and the American National Science Foundation.

Original Paper:

“A repeating fast radio burst”, by L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen & W. W. Zhu. Published in Nature on 03 March 2016 (embargoed until 02 March 2016, 19:00 CET)

Local Contact:

Dr. Laura Spitler
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-314
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-315
E-mail: dchampion@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>