Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious cosmic radio bursts found to repeat

03.03.2016

An international research team including astronomers from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, has discovered the first source of repeating bursts of radio waves which is located well beyond our Milky Way galaxy. Fast radio bursts (FRBs), lasting just a few thousandths of a second, have puzzled scientists since they were first reported nearly a decade ago. The findings indicate that these “fast radio bursts” come from an extremely powerful object which occasionally produces multiple bursts in under a minute. Their results are published in this week’s online edition of Nature.

“We’ve never before seen any FRB repeat, but to be sure we continued to monitor a previously discovered FRB over many months,” says Laura Spitler, lead author of the new paper and a postdoctoral researcher at the MPIfR. The observations were performed with the Arecibo radio telescope in Puerto Rico – the world’s largest radio telescope with a diameter of 305 meters.


The 305-m Arecibo telescope, the first telescope to see repeat FRB bursts from the same source.

Danielle Futselaar


The initially discovered “Burst 1” and 10 new bursts seen from the fast radio burst source FRB 121102. The bursts are shown as a function of radio observing frequency.

Paul Scholz (Fig. 2 in Spitler et al., Nature)

Until now most theories about the origin of these mysterious pulses have involved cataclysmic incidents that destroy their source – a star exploding in a supernova, for example, or a neutron star collapsing into a black hole. That changed last November, when McGill University PhD student Paul Scholz was sifting through results from these monitoring observations and found 10 more bursts. “The repeat signals were surprising – and very exciting,” Scholz says. “I knew immediately that the discovery would be extremely important in the study of FRBs.”

This finding suggests that these bursts must have come from an exotic object, such as a rotating neutron star having unprecedented power that enables the emission of extremely bright pulses, the researchers say. It is also possible that the finding represents the first discovery of a sub-class of the cosmic FRB population.

“Not only does this source repeat, but the brightness and spectra of the bursts also differs from those of other FRBs,” notes Laura Spitler. Additional evidence for multiple classes of FRBs also comes from a study to be published soon in Monthly Notices of the Royal Astronomical Society, which reports on the first FRBs with two peaks, found using the Parkes radio telescope in Australia. “The emission of two pulses separated by only a few thousandths of a second is most easily explained by extreme flaring in a neutron star,” explains Dr. David Champion, an astronomer at the MPIfR and the lead author of this study.

Intriguingly, the most likely implication of the new Arecibo finding – that the repeating FRB originates from a young extragalactic neutron star – is seemingly at odds with the results of a study published last week in Nature by another research team, where Bonn researchers were also involved. That paper suggested FRBs are related to cataclysmic events, such as short gamma-ray bursts, which cannot generate repeat events. Both findings together strongly imply that there are at least two different kinds of FRB sources.

In the future, the team hopes to learn more about the source through observations at other wavelength regimes. “We are going to compare our radio observations with observations from optical and X-ray telescopes,” says Jason Hessels, associate professor at the University of Amsterdam and the Netherlands Institute for Radio Astronomy as well as corresponding author of the Nature paper. “It’s an exciting time for FRB studies. You can learn something new with almost every new source”, he concludes.


Scientists from Max Planck Institute for Radio Astronomy involved in this research were Laura Spitler, the first author, Paulo Freire, Patrick Lazarus and Weiwei Zhu.

The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

The research was supported by grants from the European Research Council, the National Science and Engineering Council of Canada, and the American National Science Foundation.

Original Paper:

“A repeating fast radio burst”, by L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen & W. W. Zhu. Published in Nature on 03 March 2016 (embargoed until 02 March 2016, 19:00 CET)

Local Contact:

Dr. Laura Spitler
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-314
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-315
E-mail: dchampion@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>