Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious cosmic radio bursts found to repeat

03.03.2016

An international research team including astronomers from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, has discovered the first source of repeating bursts of radio waves which is located well beyond our Milky Way galaxy. Fast radio bursts (FRBs), lasting just a few thousandths of a second, have puzzled scientists since they were first reported nearly a decade ago. The findings indicate that these “fast radio bursts” come from an extremely powerful object which occasionally produces multiple bursts in under a minute. Their results are published in this week’s online edition of Nature.

“We’ve never before seen any FRB repeat, but to be sure we continued to monitor a previously discovered FRB over many months,” says Laura Spitler, lead author of the new paper and a postdoctoral researcher at the MPIfR. The observations were performed with the Arecibo radio telescope in Puerto Rico – the world’s largest radio telescope with a diameter of 305 meters.


The 305-m Arecibo telescope, the first telescope to see repeat FRB bursts from the same source.

Danielle Futselaar


The initially discovered “Burst 1” and 10 new bursts seen from the fast radio burst source FRB 121102. The bursts are shown as a function of radio observing frequency.

Paul Scholz (Fig. 2 in Spitler et al., Nature)

Until now most theories about the origin of these mysterious pulses have involved cataclysmic incidents that destroy their source – a star exploding in a supernova, for example, or a neutron star collapsing into a black hole. That changed last November, when McGill University PhD student Paul Scholz was sifting through results from these monitoring observations and found 10 more bursts. “The repeat signals were surprising – and very exciting,” Scholz says. “I knew immediately that the discovery would be extremely important in the study of FRBs.”

This finding suggests that these bursts must have come from an exotic object, such as a rotating neutron star having unprecedented power that enables the emission of extremely bright pulses, the researchers say. It is also possible that the finding represents the first discovery of a sub-class of the cosmic FRB population.

“Not only does this source repeat, but the brightness and spectra of the bursts also differs from those of other FRBs,” notes Laura Spitler. Additional evidence for multiple classes of FRBs also comes from a study to be published soon in Monthly Notices of the Royal Astronomical Society, which reports on the first FRBs with two peaks, found using the Parkes radio telescope in Australia. “The emission of two pulses separated by only a few thousandths of a second is most easily explained by extreme flaring in a neutron star,” explains Dr. David Champion, an astronomer at the MPIfR and the lead author of this study.

Intriguingly, the most likely implication of the new Arecibo finding – that the repeating FRB originates from a young extragalactic neutron star – is seemingly at odds with the results of a study published last week in Nature by another research team, where Bonn researchers were also involved. That paper suggested FRBs are related to cataclysmic events, such as short gamma-ray bursts, which cannot generate repeat events. Both findings together strongly imply that there are at least two different kinds of FRB sources.

In the future, the team hopes to learn more about the source through observations at other wavelength regimes. “We are going to compare our radio observations with observations from optical and X-ray telescopes,” says Jason Hessels, associate professor at the University of Amsterdam and the Netherlands Institute for Radio Astronomy as well as corresponding author of the Nature paper. “It’s an exciting time for FRB studies. You can learn something new with almost every new source”, he concludes.


Scientists from Max Planck Institute for Radio Astronomy involved in this research were Laura Spitler, the first author, Paulo Freire, Patrick Lazarus and Weiwei Zhu.

The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association.

The research was supported by grants from the European Research Council, the National Science and Engineering Council of Canada, and the American National Science Foundation.

Original Paper:

“A repeating fast radio burst”, by L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen & W. W. Zhu. Published in Nature on 03 March 2016 (embargoed until 02 March 2016, 19:00 CET)

Local Contact:

Dr. Laura Spitler
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-314
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-315
E-mail: dchampion@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2016/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>