Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysteries of a nearby planetary system's dynamics now are solved

23.04.2014

Mysteries of one of the most fascinating nearby planetary systems now have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its early online edition on 22 April 2014.

The study, which presents the first viable model for the planetary system orbiting one the first stars discovered to have planets -- the star named 55 Cancri -- was led by Penn State University graduate student Benjamin Nelson in collaboration with faculty at the Center for Exoplanets and Habitable Worlds at Penn State and five astronomers at other institutions in the United States and Germany.


Mysteries of one of the most fascinating nearby planetary systems have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its early online edition on 22 April 2014. The study presents the first viable model for the planetary system orbiting one the first stars discovered to have planets. This illustration shows the orbital distances and relative sizes of the four innermost planets known to orbit the star 55 Cancri A (bottom) in comparison with planets in own inner Solar System (top). Both Jupiter and the Jupiter-mass planet 55 Cancri "d" are outside this picture, orbiting their host star with a distance of nearly 5 astronomical units (AU), where one AU is equal to the average distance between the Earth and the Sun.

Credit: Center for Exoplanets and Habitable Worlds, Penn State University

Numerous studies since 2002 had failed to determine a plausible model for the masses and orbits of two giant planets located closer to 55 Cancri than Mercury is to our Sun. Astronomers had struggled to understand how these massive planets orbiting so close to their star could avoid a catastrophe such as one planet being flung into the star, or the two planets colliding with each other. Now, the new study led by Penn State has combined thousands of observations with new statistical and computational techniques to measure the planets' properties more accurately, revealing that their particular masses and orbits are preventing the system from self-destructing anytime soon.

"The 55 Cancri planetary system is unique in the richness of both the diversity of its known planets and the number and variety of astronomical observations," said Penn State Professor of Astronomy and Astrophysics Eric Ford, a coauthor of the paper who is a member of the Penn State Center for Astrostatistics and the Penn State Institute for CyberScience. "The complexity of this system makes it unusually challenging to interpret these observations," said Ford, whose specialties include the modeling of complex data sets.

In order to perform the new analyses, Nelson and Ford collaborated with computer scientists to develop a tool for simulating planetary systems using graphics cards to accelerate the computations. By combining multiple types of observations, the Penn State astronomers determined that one of the planets in the system (55 Cnc e) has eight times the mass of Earth, twice the distance of Earth's radius, and the same density as that of Earth. This planet is far too hot to have liquid water because its surface temperature is estimated to be 3,800 degrees Fahrenheit, so it is not likely to host life.

It was only in 2011, 8 years after the discovery of this inner-most planet (55 Cnc e) that astronomers recognized it orbited its host star in less than 18 hours, rather than nearly 3 days, as originally thought. Soon after, astronomers detected the shadow of the planet passing over the Earth, allowing astronomers to measure the size of the planet relative to the size of the star.

"These two giant planets of 55 Cancri interact so strongly that we can detect changes in their orbits. These detections are exciting because they enable us to learn things about the orbits that are normally not observable. However, the rapid interactions between the planets also present a challenge since modeling the system requires time-consuming simulations for each model to determine the trajectories of the planets and therefore their likelihood of survival for billions of years without a catastrophic collision," said Penn State graduate student Benjamin Nelson.

"One must precisely account for the motion of the giant planets in order to accurately measure the properties of the super-Earth-mass planet," Ford said. "Most previous analyses had ignored the planet-planet interactions. A few earlier studies had modeled these effects, but had performed only simplistic statistical analyses due to the huge number of calculations required for a proper analysis."

"This research achievement is an example of the scientific breakthroughs that come from data-intensive multidisciplinary research supported by the Penn State Institute for CyberScience," said Padma Raghavan, distinguished professor of computer science and engineering, associate vice-president for research, and director of the Penn State Institute for CyberScience.

The 55 Cancri planetary system is just 39 light years away in the constellation Cancer. The system shines brightly when viewed from Earth because it is so close, so astronomers have been able to directly measure the radius of its star -- an observation that is practical only for some of our closest stellar neighbors. Knowing the star's radius made it possible for astronomers to make precise measurements of its mass -- nearly the same mass as our Sun -- as well as the size and density of its super-Earth-size planet.

"Because 55 Cancri is so bright that it can be seen with the naked eye, astronomers have been able to measure the velocity of this star from four different observatories over a thousand times, giving the planets in this system much more attention than most exoplanets receive," said Penn State assistant professor Jason Wright, who led a program to scrutinize this and several other planetary systems.

Astronomers first discovered that 55 Cancri is orbited by a giant planet in 1997. Long-term observations by Wright and colleagues later made possible the detection of five planets orbiting the star, ranging from a cold giant planet with an orbit very similar to that of Jupiter to a scorching-hot "super-Earth" -- a type of planet with a mass higher than Earth's but substantially below that of Neptune, which has a mass 17 times greater than Earth.

Penn State Professor of Astronomy and Astrophysics Alexander Wolszczan and his colleague Dale Frail discovered the first planets ever detected outside our solar system. These planets orbit a distant pulsar star and were the first-known super-Earth-mass planets. Recent observaions by NASA's Kepler mission demonstrate that super-Earth-size planets are common around sun-like stars.

The study led by Nelson is part of a larger effort to develop techniques that will help with the analysis of future observations in the search for Earth-like planets. Penn State astronomers plan to search for Earth-mass planets around other bright nearby stars, using a combination of new observatories and instruments such as the MINERVA project and the Habitable Zone Planet Finder being built at Penn State for the Hobby-Eberly Telescope. "Astronomers are developing state-of-the-art instrumentation for the world's largest telescopes to detect and characterize potentially Earth-like planets. We are pairing those efforts with the development of state-of-the-art computational and statistical tools," Ford said.

###

Nelson will present the results of the new study at a meeting of the International Astronomical Union in Namur, Belgium in July 2014. In addition to astronomers at Penn State, the study's coauthors include scientists at the University of Florida, Yale University, the Max-Planck Institute for Astronomy in Germany, the University of Hawaii, and the Harvard-Smithsonian Center for Astrophysics.

The Center for Exoplanets and Habitable Worlds is supported by Penn State University, the Penn State Eberly College of Science, and the Pennsylvania Space Grant Consortium. Calculations were performed at the Penn State Research Computing and Cyberinfrastructure unit and at the University of Florida High Performance Computing Center. This research was supported by a NASA Origins of Solar Systems grant (NNX09AB35G) and a NASA Applied Information Systems Research Program grant (NNX09AM41G).

[ E. F. / Barbara K. Kennedy ]

CONTACTS

Eric Ford: eford@psu.edu, +1 814 863 5558

Barbara Kennedy (Penn State PIO): science@psu.edu, 814-863-4682

Robert Massey (Royal Astronomical Society): rm@ras.org.uk, Tel 44 (0)20 7734 3307/4582 x214, Mob +44 (0)794 124 8035

IMAGES

High-resolution illustrations are online at http://science.psu.edu/news-and-events/2014-news/Ford4-2014

Barbara K. Kennedy | Eurek Alert!

Further reports about: Astronomy Astrophysics Computing Earth NASA Sun observations state-of-the-art

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>