Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mushrooms, water-repellants more similar than you might think

27.10.2009
What do spore-launching mushrooms have in common with highly water-repellant surfaces?

According to Duke University engineers, the answer is "jumping" water droplets. As it turns out, the same phenomenon that occurs when it's time for certain mushrooms to eject spores also occurs when dew droplets skitter across a surface that is highly water repellant, or superhydrophobic.

Using a specially designed high-speed camera and microscope set-up, the engineers for the first time captured the actions of tiny water droplets on a man-made superhydrophobic surface, and to their surprise found that the droplets literally jumped straight up and off the surface.

Simply put, when two tiny water droplets – whether on a mushroom's spore or on a water-repellent surface – meet to form a larger drop, enough energy is released in the formation of the new droplet to cause it to "jump" off the surface.

"This spontaneous jumping is powered by the surface energy released when droplets coalesce," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of Assistant Professor Chuan-Hua Chen. "Because this process involves very tiny droplets at high speeds, no one had captured this phenomenon before."

The results of the team's experiments were published early online in the journal Physics Review Letters.

"A similar phenomenon occurs with the ejection of spores, known as ballistospores, from certain kinds of mushrooms," Boreyko said. "When a drop of water condensate at the base of the spore comes into contact with the wetted spore, it triggers the propulsion of the spore into the air."

Chen and Boreyko's research is the first known engineering reproduction of the ballistospore ejection process.

The work also has immediate applications in energy harvesting and thermal management, Chen said. For example, the spontaneous jumping motion offers an internal mechanism, independent of gravity, to remove condensate from the condensers in power plants.

The superhydrophobic surface used by the researchers is characterized by rows and rows of tiny bumps, covered with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. This creates pockets of air underneath the droplet that keeps it from touching the surface. This cushion of air keeping the droplet aloft is much like a puck in an air-hockey game. The same principle allows water striders to skim along the surface of ponds without falling into the water, Chen said.

"When two of these condensate drops coalesce into one, they jump at very high speeds," Boreyko said. "They move as fast as one meter per second. By taking a side view of the phenomenon, we can plainly see the droplets jump. You wouldn't see it looking down on the surface."

Interestingly, the researchers found that the mechanism used to eject ballistospores is almost identical. The critical size of the droplet on the spore for the jumping to occur is the same as that on the man-made superhydrophobic surface, and spores "jump" off the mushroom at about the same speed.

Chen said knowing how superhydrophobic surfaces are able to repel condensate drops could lead to improvements in many types of systems where heat needs to be removed through condensation.

"Smaller water droplets are much more efficient at transferring heat," Chen explained. "With the jumping mechanism, the average droplet size is about one hundred times smaller.

"In conventional cooling systems, as in big industrial plants, condensate must be removed using external forces for continuous operation," Chen said. "One of the main benefits of this superhydrophobic surface is that it needs no external energy – the coalescing of the droplets provides all the energy needed to remove the condensate."

Chen's research is supported by the National Science Foundation. Jonathan Boreyko is supported by the Pratt-Gardner Fellowship.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>