Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mushrooms, water-repellants more similar than you might think

27.10.2009
What do spore-launching mushrooms have in common with highly water-repellant surfaces?

According to Duke University engineers, the answer is "jumping" water droplets. As it turns out, the same phenomenon that occurs when it's time for certain mushrooms to eject spores also occurs when dew droplets skitter across a surface that is highly water repellant, or superhydrophobic.

Using a specially designed high-speed camera and microscope set-up, the engineers for the first time captured the actions of tiny water droplets on a man-made superhydrophobic surface, and to their surprise found that the droplets literally jumped straight up and off the surface.

Simply put, when two tiny water droplets – whether on a mushroom's spore or on a water-repellent surface – meet to form a larger drop, enough energy is released in the formation of the new droplet to cause it to "jump" off the surface.

"This spontaneous jumping is powered by the surface energy released when droplets coalesce," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of Assistant Professor Chuan-Hua Chen. "Because this process involves very tiny droplets at high speeds, no one had captured this phenomenon before."

The results of the team's experiments were published early online in the journal Physics Review Letters.

"A similar phenomenon occurs with the ejection of spores, known as ballistospores, from certain kinds of mushrooms," Boreyko said. "When a drop of water condensate at the base of the spore comes into contact with the wetted spore, it triggers the propulsion of the spore into the air."

Chen and Boreyko's research is the first known engineering reproduction of the ballistospore ejection process.

The work also has immediate applications in energy harvesting and thermal management, Chen said. For example, the spontaneous jumping motion offers an internal mechanism, independent of gravity, to remove condensate from the condensers in power plants.

The superhydrophobic surface used by the researchers is characterized by rows and rows of tiny bumps, covered with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. This creates pockets of air underneath the droplet that keeps it from touching the surface. This cushion of air keeping the droplet aloft is much like a puck in an air-hockey game. The same principle allows water striders to skim along the surface of ponds without falling into the water, Chen said.

"When two of these condensate drops coalesce into one, they jump at very high speeds," Boreyko said. "They move as fast as one meter per second. By taking a side view of the phenomenon, we can plainly see the droplets jump. You wouldn't see it looking down on the surface."

Interestingly, the researchers found that the mechanism used to eject ballistospores is almost identical. The critical size of the droplet on the spore for the jumping to occur is the same as that on the man-made superhydrophobic surface, and spores "jump" off the mushroom at about the same speed.

Chen said knowing how superhydrophobic surfaces are able to repel condensate drops could lead to improvements in many types of systems where heat needs to be removed through condensation.

"Smaller water droplets are much more efficient at transferring heat," Chen explained. "With the jumping mechanism, the average droplet size is about one hundred times smaller.

"In conventional cooling systems, as in big industrial plants, condensate must be removed using external forces for continuous operation," Chen said. "One of the main benefits of this superhydrophobic surface is that it needs no external energy – the coalescing of the droplets provides all the energy needed to remove the condensate."

Chen's research is supported by the National Science Foundation. Jonathan Boreyko is supported by the Pratt-Gardner Fellowship.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>