Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Scientist Discovers 'Firework' Display in Helix Nebula

22.07.2009
A star does not die without getting noticed and may even leave the universe with "fireworks."

At the end of its life cycle, a star begins to collapse in the middle and throws new material into space. The new material eventually becomes incorporated into new planets and life. Now, a University of Missouri professor identified new features in the material that is being ejected from the dying star Helix Nebula.

A high-resolution near-infrared image revealed new information about the knots, or the structures that are formed from the emissions of the nebula. In the Helix Nebula, the knots often appear to be comet-shaped. The shape of the tails can vary from the inner edge to the outer ring of the nebula.

"The knots in the Helix Nebula have been well known for 50 years," said Angela Speck, associate professor of astrophysics in the College of Arts and Science. "For the first time, technology allowed us to take a high-resolution infrared image that showed us tens of thousands of previously unseen comet-shaped knots that look like a massive fireworks display in space."

The Helix Nebula is a planetary nebula, and also is one of the closest nebulae to Earth. The process of developing a nebula occurs slowly over a period of 100,000 to 1,000,000 years. The new image was taken with the infrared camera on the Japanese Subaru Telescope in Hawaii and is one of the highest resolution images in the infrared wavelength with such a wide coverage of the Helix Nebula.

"Originally, we thought the hydrogen molecules ejected from a dying star did not survive very long because of strong ultraviolet light," Speck said. "We have found that the dust clouds prevent light from reaching and destroying the molecules. When the light can't come into the dusty clumps in the nebula, the molecules can't die. The hydrogen molecules can survive as long as they remain in the knots."

Astronomers estimate that that the Helix Nebula may have as many as 40,000 knots with a total mass that might be equal to 30,000 Earths. The steady evaporation of gas from the knots on the Helix Nebula causes the comet-like shape. The origin of the knots is unknown, and scientists have competing hypothesis about why the comet-shaped knots form.

"This new image provides us a better understanding of the process that creates the comet-shaped knots and helps us determine what really is going on," Speck said. "Based on our observations, we can't attribute the cause of these knots to any one mechanism. In actuality, multiple mechanism work together to create the knots."

The study, "A ‘Firework' of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)," will be published in The Astrophysical Journal in August.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Firework Helix Helix Nebula comet-shaped knots dying star nebula planetary nebula

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>