Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU-led research finds another black hole in a star cluster

06.11.2013
Last year when a team of astronomers led by a Michigan State University professor discovered two black holes in a collection of stars known as a globular cluster, the team wasn't sure if the black holes' presence was a common occurrence or a unique stroke of luck.

Researchers are now thinking it was the former, as evidence of yet another black hole has been found in a globular cluster by an MSU-led team of researchers.


This an image of globular cluster M62 captured by a radio telescope. The star-like object within the orange circle is believed to be a black hole discovered by a team of researchers led by an MSU astronomer. Photo courtesy of the National Radio Astronomy Observatory.

As published in the recent issue of Astrophysical Journal, a new black hole candidate has been found in a globular cluster known as M62.

“This implies that the discovery of the other black hole, in the globular cluster called M22, was not just a fluke,” said Laura Chomiuk, team member and MSU assistant professor of physics and astronomy. “Black holes really may be common in globular clusters.”

Black holes are stars that have died, collapsed into themselves and now have such a strong gravitational field that not even light can escape from them.

The globular cluster M62 is located in the constellation Ophiuchus, about 22,000 light years from Earth.

Until recently, astronomers had assumed that the black holes did not occur in globular clusters, which are some of the oldest and densest collections of stars in the universe. Stars are packed together a million times more closely than in the neighborhood of our sun.

There are so many stars in such a condensed area that they often interact with one another. Massive black holes would have the most violent encounters, “sling-shotting” each other out of the cluster.

Last year’s discovery of a pair of black holes in a cluster was especially surprising, Chomiuk said. It had been thought that if two black holes dwelled at the center, they would regularly encounter one another until one shoved the other out.

“I think it’s safe to say that we have discovered a whole new hunting ground for black holes,” said Chomiuk.

This latest discovery was made by using the National Science Foundation’s Karl G. Jansky Very Large Array telescope in New Mexico.

To view the paper, visit http://iopscience.iop.org/0004-637X/777/1/69/article.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: M62 black hole collection of stars globular cluster

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>