Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving forward, spin goes sideways

10.10.2011
Improvements to specialized valves that separate spin and electron currents may lead to higher-density magnetic media

Building electronic devices that work without needing to actually transport electrons is a goal of spintronics researchers, since this could lead to: reduced power consumption, lower levels of signal noise, faster operation, and denser information storage. However, the generation of pure spin currents remains a challenge.

Now, YoshiChika Otani and colleagues at the RIKEN Advanced Science Institute, Wako, and five other research institutes in Japan and China, have produced a large spin current in an important spintronic device called a lateral spin valve.

Spintronic devices store information in the spin of electrons, rather than in their density or energy level. Information flows through the propagating waves of spin orientation, while electrical charges remain stationary. Inside a lateral spin valve, a current of electron spins—but not of electron charges—is injected into a nonmagnetic wire through a ferromagnetic contact.

The current travels down the wire, and creates an output voltage across a second ferromagnetic contact, which serves as the output of the device. This lateral arrangement is important because it allows charge and spin currents to flow independently and permits the use of multiple terminals. However, while a practical lateral spin valve would require a large output voltage, previous devices had produced only 1 microvolt or less.

To increase the output voltage of their device, Otani and colleagues concentrated on the quality of the junction between the two ferromagnetic contacts and the non-magnetic, silver wire. Between the wire and the ferromagnets made of nickel and iron, the researchers placed a thin layer of magnesium oxide, which served to increase the efficiency of spin injection. They found that the straightforward annealing of their device at 400 °C in a mostly nitrogen environment reduced the quantity of oxygen in this interfacial layer.

This lowered junction resistance by a factor of up to 1,000, and increased the efficiency of spin injection into the silver wire. As a result, the output voltage reached 220 microvolts, which is more than 100 times greater than that of existing devices. In addition, the research team was able to observe the injected spins rotating, of what is technically known as precessing, in response to a magnetic field along the entire length of their 6-micrometer silver wire, confirming high spin injection efficiency.

The spin valve could be further improved, says Otani, by using cobalt–iron ferromagnets, which are known to have greater spin injection efficiency than nickel–iron, with potential near-term application as sensors in high-density magnetic media.

The corresponding author for this highlight is based at the Quantum Nano-Scale Magnetics Team, RIKEN Advanced Science Institute

Reference:
Fukuma, Y., Wang, L., Idzuchi, H., Takahashi, S., Maekawa, S. & Otani, Y. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Materials 10, 527–531 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Advanced Investigator Grant MOVING RIKEN electron spin

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>