Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More precise estimate of Avogadro's number to help redefine kilogram

15.07.2015

A kilogram defined in terms of fundamental constant instead of a physical mass will expand international access to precise measurements

An ongoing international effort to redefine the kilogram by 2018 has been helped by recent efforts from a team researchers from Italy, Japan and Germany to correlate two of the most precise measurements of Avogadro's number and obtain one averaged value that can be used for future calculations. Their results are published this week in the Journal of Physical and Chemical Reference Data, from AIP Publishing.


The number of atoms in this silicon sphere is known given or taken 20 atoms each 10^9. The atom distance was measured by the X-ray interferometer on the left.

Credit: Enrico Massa and Carlo Sasso

Avogadro's number is approximately 6.022x10^23 -- an almost unfathomably large quantity, greater than the number of grains of sand on earth or even the number of stars in the universe. But the number, which represents the number of discrete particles like atoms or molecules in a "mole" of a substance, is a useful way to wrangle these tiny particles into more meaningful quantities. A mole of water molecules, for instance, is only a few teaspoons of liquid. Because Avogadro's number is linked to a number of other physical constants, its value can be used to express other units, such as the kilogram.

The team has calculated Avogadro's number several times in the past. Each time, they obtained a value for Avogadro's number by counting the number of atoms in a one kilogram sphere of highly pure Si-28. When silicon crystalizes, it forms cubic cells of eight atoms each. Thus, it is possible to calculate the number of atoms in such a sphere by examining the ratio between the total crystal volume and the volume occupied by each silicon atom, which can in turn be calculated by measuring the cubic cell.

Earlier this year, the group obtained a new value for Avogadro's number with an uncertainty of less than 20 atoms per billion -- down from a 30-atom uncertainty in their 2011 value. But because both numbers have some degree of uncertainty, albeit a tiny one, it is more accurate to correlate them and then average them into one more neutral value: 6.02214082(11)x10^23. The number in parentheses represents the uncertainty of the last digit in the result.

From Avogadro's number to the kilogram

Currently, the kilogram weight standard is a platinum-iridium cylinder about the size of a golf ball, housed in the International Bureau of Weights and Measures in Sevres, France. But in a day and age when science is a truly global endeavor, having just one physical standard against which all others must be calibrated is an impediment to progress. Plus, the standard itself is subject to subtle fluctuations in mass over time due to surface reactions.

That's why the international metrology community is working to redefine the kilogram in terms of a constant of physics instead of a physical object. After years of discussion and research, the kilogram will be officially redefined in terms of Planck's constant in 2018.

However, redefining one of the SI units is far more complicated than updating the dictionary. "Prior to redefining the kilogram, we must demonstrate that the new realization is indistinguishable from the present one, to within the accuracy of the world's best balances," said Giovanni Mana, one of the lead researchers on the new paper. "Otherwise, when changing from the present definition to the new one, all users in science, industry, and commerce must change the mass value of all the existing artefacts." Such adjustments would be time-consuming and inconvenient, and would leave ample room for error.

That's where Avogadro's number comes in. Before creating a new definition of the kilogram based on Planck's constant, metrologists must first be sure that the fixed value of Planck's constant is as good as possible. Because Planck's constant can be derived from Avogadro's number (and vice versa), using other fundamental constants known more precisely, a more precise definition of Avogadro's number also strengthens the definition of Planck's constant.

Even though fixing Avogadro's number will not be the official way to define the new mass standard, counting atoms remains an important check for the accuracy of the Planck's constant-based definition, as well as a way to put the definition in practice. The two kilogram measurements, reached by different means, should closely agree with each other.

Ultimately, the redefinition of the kilogram will make precision measurement more readily available to a greater number of labs. "In metrology, it is important to ensure independence and democracy, to avoid the monopoly of a single nation or laboratory," said Mana. Pinning down Avogadro's number is one small step in this direction.

"The absense of technologies to redefine the kilogram is the biggest impediment to a redefinition of the whole system of measurement units, which is expected to deliver even more solid foundations and reliability to precision measurements and to set the stage for further innovations in technology and science," said Mana.

###

The article, "Correlation of the NA measurements by counting 28Si atoms," is authored by G. Mana, E. Massa, C.P. Sasso, M. Stock, K. Fujii, N. Kuramoto, S. Mizushima, T. Narukawa, M. Borys, I. Busch, A. Nicolaus and A. Pramann. It will appear in the Journal of Physical and Chemical Reference Data on July 14, 2015. After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/jpcrd/44/3/10.1063/1.4921240.

ABOUT THE JOURNAL

Journal of Physical and Chemical Reference Data is the authoritative resource for critically evaluated reference data for physical science and engineering disciplines. The journal publishes papers which report the best available measurements for the relevant properties. http://jpcrd.aip.org

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>