Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon younger than previously thought

18.08.2011
Analysis of a piece of lunar rock brought back to Earth by the Apollo 16 mission in 1972 has shown that the Moon may be much younger than previously believed.

This is concluded in new research conducted by an international team of scientists that includes James Connelly from the Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen. Their work has just been published in Nature.

The prevailing theory of our Moon’s origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean.

As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Analysis of a lunar rock sample of this presumed ancient crust has given scientists new insights into the formation of the Moon.

Luna rock from Apollo 16

“We have analysed a piece of lunar rock that was brought back to Earth by the Apollo 16 mission in 1972. Although the samples have been carefully stored at NASA Johnson Space Center since their return to Earth, we had to extensively pre-clean the samples using a new method to remove terrestrial lead contamination. Once we removed the contamination, we found that this sample is almost 100 million years younger than we expected," says researcher James Connelly of the Centre for Star and Planet Formation.

According to the existing theory for lunar formation, a rock type called ferroan anorthosite, also known as FAN, is the oldest of the Moon’s crustal rocks, but scientists have had difficulty dating samples of this crust.

Newly-refined techniques help determine age of sample
The research team, which includes scientists from the Natural History Museum of Denmark, Lawrence Livermore National Laboratory, Carnegie Institute’s Department of Terrestrial Magnetism and Université Blaise Pascal, used newly-refined techniques to determine the age of the sample of a FAN that was returned by the Apollo 16 mission and has been stored at the lunar rock collection at the NASA Johnson Space Center.

The team analysed the isotopes of the elements lead and neodymium to place the age of a sample of a FAN at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon’s age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals - zircons from Western Australia - suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.

This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallised. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates – and therefore the moon itself is much younger than previously believed - or that this sample does not represent a crystallisation product of the original magma ocean. Either scenario requires major revision to previous models for the formation of the Moon.

Contact
James Connelly
Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen.
Email: connelly@snm.ku.dk.
Phone: +45 28 51 99 62.
Martin Bertelsen
Communication Officer
Natural History Museum of Denmark, University of Copenhagen.
Email: mlbertelsen@snm.ku.dk.
Phone: +45 24 48 21 47

James Connelly | EurekAlert!
Further information:
http://www.ku.dk

Further reports about: Apollo Earth's magnetic field Moon NASA Planet Space Center magma ocean solar system

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>