Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon younger than previously thought

18.08.2011
Analysis of a piece of lunar rock brought back to Earth by the Apollo 16 mission in 1972 has shown that the Moon may be much younger than previously believed.

This is concluded in new research conducted by an international team of scientists that includes James Connelly from the Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen. Their work has just been published in Nature.

The prevailing theory of our Moon’s origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean.

As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Analysis of a lunar rock sample of this presumed ancient crust has given scientists new insights into the formation of the Moon.

Luna rock from Apollo 16

“We have analysed a piece of lunar rock that was brought back to Earth by the Apollo 16 mission in 1972. Although the samples have been carefully stored at NASA Johnson Space Center since their return to Earth, we had to extensively pre-clean the samples using a new method to remove terrestrial lead contamination. Once we removed the contamination, we found that this sample is almost 100 million years younger than we expected," says researcher James Connelly of the Centre for Star and Planet Formation.

According to the existing theory for lunar formation, a rock type called ferroan anorthosite, also known as FAN, is the oldest of the Moon’s crustal rocks, but scientists have had difficulty dating samples of this crust.

Newly-refined techniques help determine age of sample
The research team, which includes scientists from the Natural History Museum of Denmark, Lawrence Livermore National Laboratory, Carnegie Institute’s Department of Terrestrial Magnetism and Université Blaise Pascal, used newly-refined techniques to determine the age of the sample of a FAN that was returned by the Apollo 16 mission and has been stored at the lunar rock collection at the NASA Johnson Space Center.

The team analysed the isotopes of the elements lead and neodymium to place the age of a sample of a FAN at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon’s age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals - zircons from Western Australia - suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.

This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallised. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates – and therefore the moon itself is much younger than previously believed - or that this sample does not represent a crystallisation product of the original magma ocean. Either scenario requires major revision to previous models for the formation of the Moon.

Contact
James Connelly
Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen.
Email: connelly@snm.ku.dk.
Phone: +45 28 51 99 62.
Martin Bertelsen
Communication Officer
Natural History Museum of Denmark, University of Copenhagen.
Email: mlbertelsen@snm.ku.dk.
Phone: +45 24 48 21 47

James Connelly | EurekAlert!
Further information:
http://www.ku.dk

Further reports about: Apollo Earth's magnetic field Moon NASA Planet Space Center magma ocean solar system

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>