Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the moon got its stripes

17.07.2009
A new study has revealed the origins of tiger stripes and a subsurface ocean on Enceladus- one of Saturn’s many moons. These geological features are believed to be the result of the moon’s unusual chemical composition and not a hot core, shedding light on the evolution of planets and guiding future space exploration.

Dr Dave Stegman, a Centenary Research Fellow in the School of Earth Sciences at the University of Melbourne, led the study and says that part of the intrigue with Enceladus is that it was once presumed to be a lifeless, frozen ice ball until a water vapour plume was seen erupting from its surface in 2006.

“NASA’s Cassini spacecraft recently revealed Enceladus as a dynamic place, recording geological features such as geysers emerging from the ‘tiger stripes’ which are thought to be cracks caused by tectonic activity on the south pole of the moon’s surface,” says Dr Stegman.

The moon is also one of the brightest objects in our solar system because the ice covering its surface reflects almost 100 percent of the sunlight that strikes it. One of Saturn’s 53 moons (so far identified) Enceladus reflects so much of the sun’s energy that its surface temperature is about -201° C (-330° F).

Grappling with how an inaccessible small moon with a completely frozen interior was capable of displaying geological activity, Dr Stegman and colleagues used computer simulations to virtually explore it.

Ammonia, usually found on Earth as an odorous gas used to make fertilizers, has been indirectly observed to be present in Enceladus and formed the basis of the study which is the first to reveal the origins of the subsurface ocean.

The model reveals that Enceladus initially had a frozen shell composed of a mixture of ammonia and water ice surrounding a rocky core. Over time, as Enceladus interacted with other moons, a small amount of heat was generated above the silicate core which made the ice shell separate into chemically distinct layers. An ammonia-enriched liquid layer formed on top of the core while a thin layer of pure water ice formed above that. The work will be published in the August issue of the planetary science journal, Icarus.

“We found that if a layer of pure water ice formed near the core, it would have enough buoyancy to rise upwards, and such a redistribution of mass can generate large tectonic stresses at the surface,” says Dr Stegman. “However, the pure water ice rising up is also slightly warmer which causes the separation to occur again, this time forming an ammonia-enriched ocean just under the surface. The presence of ammonia, which acts as an anti-freeze, then helps keep the ocean in its liquid state.”

“These simulations are an important step in understanding how planets evolve and provide questions to focus future space exploration and observations. It will hopefully progress our understanding of how and why planets and moons are different to each other.”

Nerissa Hannink | EurekAlert!
Further information:
http://www.unimelb.edu.au

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>