Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the moon got its stripes

17.07.2009
A new study has revealed the origins of tiger stripes and a subsurface ocean on Enceladus- one of Saturn’s many moons. These geological features are believed to be the result of the moon’s unusual chemical composition and not a hot core, shedding light on the evolution of planets and guiding future space exploration.

Dr Dave Stegman, a Centenary Research Fellow in the School of Earth Sciences at the University of Melbourne, led the study and says that part of the intrigue with Enceladus is that it was once presumed to be a lifeless, frozen ice ball until a water vapour plume was seen erupting from its surface in 2006.

“NASA’s Cassini spacecraft recently revealed Enceladus as a dynamic place, recording geological features such as geysers emerging from the ‘tiger stripes’ which are thought to be cracks caused by tectonic activity on the south pole of the moon’s surface,” says Dr Stegman.

The moon is also one of the brightest objects in our solar system because the ice covering its surface reflects almost 100 percent of the sunlight that strikes it. One of Saturn’s 53 moons (so far identified) Enceladus reflects so much of the sun’s energy that its surface temperature is about -201° C (-330° F).

Grappling with how an inaccessible small moon with a completely frozen interior was capable of displaying geological activity, Dr Stegman and colleagues used computer simulations to virtually explore it.

Ammonia, usually found on Earth as an odorous gas used to make fertilizers, has been indirectly observed to be present in Enceladus and formed the basis of the study which is the first to reveal the origins of the subsurface ocean.

The model reveals that Enceladus initially had a frozen shell composed of a mixture of ammonia and water ice surrounding a rocky core. Over time, as Enceladus interacted with other moons, a small amount of heat was generated above the silicate core which made the ice shell separate into chemically distinct layers. An ammonia-enriched liquid layer formed on top of the core while a thin layer of pure water ice formed above that. The work will be published in the August issue of the planetary science journal, Icarus.

“We found that if a layer of pure water ice formed near the core, it would have enough buoyancy to rise upwards, and such a redistribution of mass can generate large tectonic stresses at the surface,” says Dr Stegman. “However, the pure water ice rising up is also slightly warmer which causes the separation to occur again, this time forming an ammonia-enriched ocean just under the surface. The presence of ammonia, which acts as an anti-freeze, then helps keep the ocean in its liquid state.”

“These simulations are an important step in understanding how planets evolve and provide questions to focus future space exploration and observations. It will hopefully progress our understanding of how and why planets and moons are different to each other.”

Nerissa Hannink | EurekAlert!
Further information:
http://www.unimelb.edu.au

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>