Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon’s polar craters could be the place to find lunar ice

18.12.2008
Scientists have discovered where they believe would be the best place to find ice on the moon.

Astrophysicists, led by an expert at Durham University, say if frozen water exists then it is most likely to be found near to the moon’s poles in craters that are permanently shaded from the sun.

Their findings are based on a new computer analysis of data from the Lunar Prospector, a space probe sent to the moon in 1998 by NASA. The researchers showed that hydrogen on the moon is concentrated into polar craters where temperatures are colder than minus 170 degrees Celsius.

Hydrogen, together with the oxygen that is abundant within moon rock, is a key element in making water.

If ice is present in the craters then the researchers say it could potentially provide a water source for the eventual establishment of a manned base on the moon. A moon base could be used as a platform for exploration into the further reaches of our solar system.

The findings are published in the International Journal of Solar System Studies, Icarus.

They show that if the hydrogen is present as water ice, then the average concentration in some craters corresponds to ten grams of ice in each kilogram of moon rock.

However the researchers say that instead of being water ice, hydrogen may be present in the form of protons fired from the sun into the dusty lunar surface.

Dr Vincent Eke, in the Institute for Computational Cosmology, at Durham University, said: “This research applies a newly developed technique to data from the Lunar Prospector mission to show that hydrogen is actually concentrated into the permanently shaded polar craters.

“Water ice should be stable for billions of years on the moon provided that it receives no sunlight.

“If the hydrogen is present as water ice then our results imply that the top metre of the moon holds about enough water to fill up Kielder Water.”

Kielder Water, in Northumberland, holds 200,000 million litres of water, making it the largest UK manmade reservoir in Northern Europe.

The research may be of immediate use in lunar exploration. Dr Richard Elphic, in the Planetary Systems Branch, NASA Ames Research Center, said: "These results will help NASA's soon-to-be launched Lunar Crater Observation and Sensing Satellite (LCROSS) and Lunar Reconnaissance Orbiter (LRO) missions.

“For example, LCROSS aims to liberate water by impacting into permanently shadowed polar terrain where ice may exist, and our improved maps of hydrogen abundance can help LCROSS select a promising impact site.

“These maps will also help focus LRO's search for possible polar ice by identifying hydrogen-rich locales".

The research was led by Dr Eke together with colleagues from the University of Glasgow and the Planetary Systems Branch, Space Science and Astrobiology Division, of NASA Ames Research Center in California, USA.

The research was funded by a Royal Society University Research Fellowship, a Leverhulme Research Fellowship and the NASA Lunar Reconnaissance Orbiter Participating Scientist Programme.

Leighton Kitson | alfa
Further information:
http://www.durham.ac.uk
http://www.royalsociety.org

Further reports about: LCROSS Moon’s polar craters NASA Orbiter Planetary Water frozen water lunar base lunar ice moon rock water ice

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>