Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon’s polar craters could be the place to find lunar ice

18.12.2008
Scientists have discovered where they believe would be the best place to find ice on the moon.

Astrophysicists, led by an expert at Durham University, say if frozen water exists then it is most likely to be found near to the moon’s poles in craters that are permanently shaded from the sun.

Their findings are based on a new computer analysis of data from the Lunar Prospector, a space probe sent to the moon in 1998 by NASA. The researchers showed that hydrogen on the moon is concentrated into polar craters where temperatures are colder than minus 170 degrees Celsius.

Hydrogen, together with the oxygen that is abundant within moon rock, is a key element in making water.

If ice is present in the craters then the researchers say it could potentially provide a water source for the eventual establishment of a manned base on the moon. A moon base could be used as a platform for exploration into the further reaches of our solar system.

The findings are published in the International Journal of Solar System Studies, Icarus.

They show that if the hydrogen is present as water ice, then the average concentration in some craters corresponds to ten grams of ice in each kilogram of moon rock.

However the researchers say that instead of being water ice, hydrogen may be present in the form of protons fired from the sun into the dusty lunar surface.

Dr Vincent Eke, in the Institute for Computational Cosmology, at Durham University, said: “This research applies a newly developed technique to data from the Lunar Prospector mission to show that hydrogen is actually concentrated into the permanently shaded polar craters.

“Water ice should be stable for billions of years on the moon provided that it receives no sunlight.

“If the hydrogen is present as water ice then our results imply that the top metre of the moon holds about enough water to fill up Kielder Water.”

Kielder Water, in Northumberland, holds 200,000 million litres of water, making it the largest UK manmade reservoir in Northern Europe.

The research may be of immediate use in lunar exploration. Dr Richard Elphic, in the Planetary Systems Branch, NASA Ames Research Center, said: "These results will help NASA's soon-to-be launched Lunar Crater Observation and Sensing Satellite (LCROSS) and Lunar Reconnaissance Orbiter (LRO) missions.

“For example, LCROSS aims to liberate water by impacting into permanently shadowed polar terrain where ice may exist, and our improved maps of hydrogen abundance can help LCROSS select a promising impact site.

“These maps will also help focus LRO's search for possible polar ice by identifying hydrogen-rich locales".

The research was led by Dr Eke together with colleagues from the University of Glasgow and the Planetary Systems Branch, Space Science and Astrobiology Division, of NASA Ames Research Center in California, USA.

The research was funded by a Royal Society University Research Fellowship, a Leverhulme Research Fellowship and the NASA Lunar Reconnaissance Orbiter Participating Scientist Programme.

Leighton Kitson | alfa
Further information:
http://www.durham.ac.uk
http://www.royalsociety.org

Further reports about: LCROSS Moon’s polar craters NASA Orbiter Planetary Water frozen water lunar base lunar ice moon rock water ice

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>