Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon Magic: Researchers Develop New Tool To Visualize Past, Future Lunar Eclipses

10.06.2009
Researchers at Rensselaer Polytechnic Institute have developed a new method for using computer graphics to simulate and render an accurate visualization of a lunar eclipse. The model uses celestial geometry of the sun, Earth, and moon, along with data for the Earth’s atmosphere and the moon’s peculiar optical properties to create picture-perfect images of lunar eclipses.

Lunar eclipses are well-documented throughout human history. The rare and breathtaking phenomena, which occur when the moon passes into the Earth’s shadow and seemingly changes shape, color, or disappears from the night sky completely, caught the attention of poets, farmers, leaders, and scientists alike.

Researchers at Rensselaer Polytechnic Institute have developed a new method for using computer graphics to simulate and render an accurate visualization of a lunar eclipse. The model uses celestial geometry of the sun, Earth, and moon, along with data for the Earth’s atmosphere and the moon’s peculiar optical properties to create picture-perfect images of lunar eclipses.

The computer-generated images, which are virtually indistinguishable from actual photos of eclipses, offer a chance to look back into history at famous eclipses, or peek at future eclipses scheduled to occur in the coming years and decades. The model can also be configured to show how the eclipse would appear from any geographical perspective on Earth – the same eclipse would look different depending if the viewer was in New York, Seattle, or Rome.

“Other researchers have rendered the night sky, the moon, and sunsets, but this is the first time anyone has rendered lunar eclipses,” said Barbara Cutler, assistant professor of computer science at Rensselaer, who supervised the study. “Our models may help with investigations into historical atmospheric phenomena, and they could also be of interest to artists looking to add this special effect to their toolbox.”

Graduate student Theodore C. Yapo presented the study, titled “Rendering Lunar Eclipses,” in late May at the Graphics Interface 2009 conference.

The appearance of lunar eclipses can vary considerably, ranging from nearly invisible jet black to deep red, rust, to bright copper-red or orange. The appearance depends on several different factors, including how sunlight is refracted and scattered in the Earth’s atmosphere. Yapo and Cutler combined and configured models for sunlight, the solar system, as well as the different layers and different effects of the Earth’s atmosphere, to develop their lunar eclipse models.

For the study, Yapo and Cutler compared digital photos of the Feb. 21, 2008, total lunar eclipse with computer-rendered models of the same eclipse. The rendered images were nearly indistinguishable from the photos.

Another model they created was a rendering of the expected 2010 lunar eclipse. Yapo said he looks forward to taking photographs of the event and comparing them to the renderings. One potential hiccup, he said, is the April eruption of Mt. Redoubt in Alaska – volcanic dust in the Earth’s stratosphere can make a lunar eclipse noticeably darker and more brown. Yapo and Cutler’s models can account for this dust, but they performed their simulation prior to the eruption, and assumed a low-dust atmosphere.

The research paper and high-res photos may be viewed at: http://www.cs.rpi.edu/graphics/eclipse_gi09/

For more information on Cutler’s computer graphics research, visit: http://www.cs.rpi.edu/~cutler/

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>