Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moon's Rough 'Wrinkles' Reveal Clues To Its Past

Written on the moon's weary face are the damages it has endured for the past 4-1/2 billion years. From impact craters to the dark plains of maria left behind by volcanic eruptions, the scars are all that remain to tell the tale of what happened to the moon. But they only hint at the processes that once acted—and act today—to shape the surface.

To get more insight into those processes, Meg Rosenburg and her colleagues at the California Institute of Technology, Pasadena, Calif. put together the first comprehensive set of maps revealing the slopes and roughness of the moon's surface. These maps are based on detailed data collected by the Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter. LOLA and LRO were built at NASA's Goddard Space Flight Center in Greenbelt, Md.

Like wrinkles on skin, the roughness of craters and other features on the moon's surface can reveal their age. "The key is to look at the roughness at both long and short scales," says Rosenburg, who is the first author on the paper describing the results, published in the Journal of Geophysical Research earlier this year.

The roughness depends on the subtle ups and downs of the landscape, a quality that the researchers get at by measuring the slope at locations all over the surface. To put together a complete picture, the researchers looked at roughness at a range of different scales—the distances between two points—from 17 meters (about 56 feet) to as much as 2.7 kilometers (about 1.6 miles).

"Old and young craters have different roughness properties—they are rougher on some scales and smoother on others," says Rosenburg. That's because the older craters have been pummeled for eons by meteorites that pit and mar the site of the original impact, changing the original shape of the crater.

"Because this softening of the terrain hasn't happened at the new impact sites, the youngest craters immediately stand out," says NASA Goddard's Gregory Neumann, a co-investigator on LOLA.

"It is remarkable that the moon exhibits a great range of topographic character: on the extremes, surfaces roughened by the accumulation of craters over billions of years can be near regions smoothed and resurfaced by more recent mare volcanism," says Oded Aharonson, Rosenburg's advisor at the California Institute of Technology.

By looking at where and how the roughness changes, the researchers can get important clues about the processes that shaped the moon. A roughness map of the material surrounding Orientale basin, for example, reveals subtle differences in the ejecta, or debris, that was thrown out when the crater was formed by a giant object slamming into the moon.

That information can be combined with a contour map that shows where the high and low points are. "By looking at both together, we can say that one part of Orientale is not just higher or lower, it's also differently rough," Rosenburg says. "That gives us some clues about the impact process that launched the ejecta and also about the surface processes that later acted to modify it."

Likewise, the smooth plains of maria, which were created by volcanic activity, have a different roughness "signature" from the moon's highlands, reflecting the vastly different origins of the two terrains. Maria is Latin for "seas," and they got that name from early astronomers who mistook them for actual seas.

Just as on the moon, the same approach can be used to study surface processes on other bodies as well, Rosenburg says. "The processes at work are different on Mars than they are on an asteroid, but they each leave a signature in the topography for us to interpret. By studying roughness at different scales, we can begin to understand how our nearest neighbors came to look the way they do."

Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.

Liz Zubritsky | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>