Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moon's Rough 'Wrinkles' Reveal Clues To Its Past

16.05.2011
Written on the moon's weary face are the damages it has endured for the past 4-1/2 billion years. From impact craters to the dark plains of maria left behind by volcanic eruptions, the scars are all that remain to tell the tale of what happened to the moon. But they only hint at the processes that once acted—and act today—to shape the surface.

To get more insight into those processes, Meg Rosenburg and her colleagues at the California Institute of Technology, Pasadena, Calif. put together the first comprehensive set of maps revealing the slopes and roughness of the moon's surface. These maps are based on detailed data collected by the Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter. LOLA and LRO were built at NASA's Goddard Space Flight Center in Greenbelt, Md.

Like wrinkles on skin, the roughness of craters and other features on the moon's surface can reveal their age. "The key is to look at the roughness at both long and short scales," says Rosenburg, who is the first author on the paper describing the results, published in the Journal of Geophysical Research earlier this year.

The roughness depends on the subtle ups and downs of the landscape, a quality that the researchers get at by measuring the slope at locations all over the surface. To put together a complete picture, the researchers looked at roughness at a range of different scales—the distances between two points—from 17 meters (about 56 feet) to as much as 2.7 kilometers (about 1.6 miles).

"Old and young craters have different roughness properties—they are rougher on some scales and smoother on others," says Rosenburg. That's because the older craters have been pummeled for eons by meteorites that pit and mar the site of the original impact, changing the original shape of the crater.

"Because this softening of the terrain hasn't happened at the new impact sites, the youngest craters immediately stand out," says NASA Goddard's Gregory Neumann, a co-investigator on LOLA.

"It is remarkable that the moon exhibits a great range of topographic character: on the extremes, surfaces roughened by the accumulation of craters over billions of years can be near regions smoothed and resurfaced by more recent mare volcanism," says Oded Aharonson, Rosenburg's advisor at the California Institute of Technology.

By looking at where and how the roughness changes, the researchers can get important clues about the processes that shaped the moon. A roughness map of the material surrounding Orientale basin, for example, reveals subtle differences in the ejecta, or debris, that was thrown out when the crater was formed by a giant object slamming into the moon.

That information can be combined with a contour map that shows where the high and low points are. "By looking at both together, we can say that one part of Orientale is not just higher or lower, it's also differently rough," Rosenburg says. "That gives us some clues about the impact process that launched the ejecta and also about the surface processes that later acted to modify it."

Likewise, the smooth plains of maria, which were created by volcanic activity, have a different roughness "signature" from the moon's highlands, reflecting the vastly different origins of the two terrains. Maria is Latin for "seas," and they got that name from early astronomers who mistook them for actual seas.

Just as on the moon, the same approach can be used to study surface processes on other bodies as well, Rosenburg says. "The processes at work are different on Mars than they are on an asteroid, but they each leave a signature in the topography for us to interpret. By studying roughness at different scales, we can begin to understand how our nearest neighbors came to look the way they do."

Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.

Liz Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/LRO/news/moon-wrinkles.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>