Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring food with millimeter waves

01.12.2011
We may be able to see through glass, water and air, but not packing paper, plastic or cardboard. What remains hidden from the human eye is made visible by a new millimeter-wave sensor: unlike x-ray scanners, it can see through non-transparent materials without sending out harmful rays.

Has the packet been properly filled? Are there impurities in the chocolate? Have the plastic seams been welded correctly? Is there a knife hidden in the parcel? Answers to all these questions are provided by SAMMI, short for Stand Alone MilliMeter wave Imager. The millimeter-wave sensor is able to see through all non-transparent materials. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg have developed the device, whichat 50 centimeters wide and 32 centimeters high is no larger than a compact laser printer.


The millimeter-wave sensor can look through all non-transparent, non-metallic materials. © Fraunhofer FHR

SAMMI can happily deal with all non-metallic materials. “The system detects wooden splinters lurking in diapers, air pockets in plastic, breaks in bars of marzipan, and foreign bodies in foodstuffs. It can even detect and monitor the dehydration process in plants and how severely they have been stressed by drought,” says Dr. Helmut Essen, head of the FHR’s millimeter-wave radar and high-frequency sensors department. This makes the scanner extremely versatile – it’s just as suitable for industrial product and quality control as for analyzing materials in the laboratory. Because the system can detect dangerous substances such as explosive powder hidden in letters, vulnerable people such as politicians or freight handlers can be protected by millimeter-wave radar.

SAMMI’s most striking feature is its ability to pick out the smallest differences in materials – differences that are invisible to x-rays. SAMMI can for example differentiate between the different fillings of chocolates, or between rubber composites that have similar or identical absorption qualities. Another advantage is that the scanner doesn’t employ ionizing radiation, which can damage health. It is also low-maintenance, not requiring the regular checks necessary with x-ray tubes.

But how does SAMMI work? Inside the system’s housing, there is both a transmitting and a receiving antenna on each of two opposing rotating plates. A conveyor belt transports the sample – perhaps a package whose contents are unknown – between the antennae, while these send electromagnetic waves in a high frequency of 78 GHz. Different areas of the sample absorb the signal to different degrees, leading the varying material composition across a sample to show up in distinguishable contrast. “Basically we examine the scanned objects for dissimilarities,” explains Essen. The content of the sample appears in real time on the scanner’s fold-out display. If the package contains a knife, even the grain of the handle is discernible. If the handle is hollow, the millimeter-wave sensor would show that, too. The device scans an area of 30 x 30 centimeters in just 60 seconds.

Our system can be operated without safety precautions or safety instructions, and since it weighs just 20 kilograms it’s eminently portable. It can also be adjusted to various measuring frequencies,” the scientist points out. In future, the researchers aim to “upgrade” the system for terahertz frequencies of 2 THz. “Then we’ll be in a position not just to detect different structures but also to establish which type of plastic a product is made from. That’s not possible at the moment,” says Dr. Essen.

At present, SAMMI is only suitable for spot checks. However, the FHR researchers are working on adapting the millimeter-wave sensor for industrial assembly lines for the fast, automatic inspection of goods. They envision mounting a line of sensors over the conveyor belt, so that in future products can be scanned at a speed of up to six meters per second.

Dr. Helmut Essen | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/monitoring-food-with-millimeter-waves.html

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>