Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring food with millimeter waves

01.12.2011
We may be able to see through glass, water and air, but not packing paper, plastic or cardboard. What remains hidden from the human eye is made visible by a new millimeter-wave sensor: unlike x-ray scanners, it can see through non-transparent materials without sending out harmful rays.

Has the packet been properly filled? Are there impurities in the chocolate? Have the plastic seams been welded correctly? Is there a knife hidden in the parcel? Answers to all these questions are provided by SAMMI, short for Stand Alone MilliMeter wave Imager. The millimeter-wave sensor is able to see through all non-transparent materials. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg have developed the device, whichat 50 centimeters wide and 32 centimeters high is no larger than a compact laser printer.


The millimeter-wave sensor can look through all non-transparent, non-metallic materials. © Fraunhofer FHR

SAMMI can happily deal with all non-metallic materials. “The system detects wooden splinters lurking in diapers, air pockets in plastic, breaks in bars of marzipan, and foreign bodies in foodstuffs. It can even detect and monitor the dehydration process in plants and how severely they have been stressed by drought,” says Dr. Helmut Essen, head of the FHR’s millimeter-wave radar and high-frequency sensors department. This makes the scanner extremely versatile – it’s just as suitable for industrial product and quality control as for analyzing materials in the laboratory. Because the system can detect dangerous substances such as explosive powder hidden in letters, vulnerable people such as politicians or freight handlers can be protected by millimeter-wave radar.

SAMMI’s most striking feature is its ability to pick out the smallest differences in materials – differences that are invisible to x-rays. SAMMI can for example differentiate between the different fillings of chocolates, or between rubber composites that have similar or identical absorption qualities. Another advantage is that the scanner doesn’t employ ionizing radiation, which can damage health. It is also low-maintenance, not requiring the regular checks necessary with x-ray tubes.

But how does SAMMI work? Inside the system’s housing, there is both a transmitting and a receiving antenna on each of two opposing rotating plates. A conveyor belt transports the sample – perhaps a package whose contents are unknown – between the antennae, while these send electromagnetic waves in a high frequency of 78 GHz. Different areas of the sample absorb the signal to different degrees, leading the varying material composition across a sample to show up in distinguishable contrast. “Basically we examine the scanned objects for dissimilarities,” explains Essen. The content of the sample appears in real time on the scanner’s fold-out display. If the package contains a knife, even the grain of the handle is discernible. If the handle is hollow, the millimeter-wave sensor would show that, too. The device scans an area of 30 x 30 centimeters in just 60 seconds.

Our system can be operated without safety precautions or safety instructions, and since it weighs just 20 kilograms it’s eminently portable. It can also be adjusted to various measuring frequencies,” the scientist points out. In future, the researchers aim to “upgrade” the system for terahertz frequencies of 2 THz. “Then we’ll be in a position not just to detect different structures but also to establish which type of plastic a product is made from. That’s not possible at the moment,” says Dr. Essen.

At present, SAMMI is only suitable for spot checks. However, the FHR researchers are working on adapting the millimeter-wave sensor for industrial assembly lines for the fast, automatic inspection of goods. They envision mounting a line of sensors over the conveyor belt, so that in future products can be scanned at a speed of up to six meters per second.

Dr. Helmut Essen | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/monitoring-food-with-millimeter-waves.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>