Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring food with millimeter waves

01.12.2011
We may be able to see through glass, water and air, but not packing paper, plastic or cardboard. What remains hidden from the human eye is made visible by a new millimeter-wave sensor: unlike x-ray scanners, it can see through non-transparent materials without sending out harmful rays.

Has the packet been properly filled? Are there impurities in the chocolate? Have the plastic seams been welded correctly? Is there a knife hidden in the parcel? Answers to all these questions are provided by SAMMI, short for Stand Alone MilliMeter wave Imager. The millimeter-wave sensor is able to see through all non-transparent materials. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg have developed the device, whichat 50 centimeters wide and 32 centimeters high is no larger than a compact laser printer.


The millimeter-wave sensor can look through all non-transparent, non-metallic materials. © Fraunhofer FHR

SAMMI can happily deal with all non-metallic materials. “The system detects wooden splinters lurking in diapers, air pockets in plastic, breaks in bars of marzipan, and foreign bodies in foodstuffs. It can even detect and monitor the dehydration process in plants and how severely they have been stressed by drought,” says Dr. Helmut Essen, head of the FHR’s millimeter-wave radar and high-frequency sensors department. This makes the scanner extremely versatile – it’s just as suitable for industrial product and quality control as for analyzing materials in the laboratory. Because the system can detect dangerous substances such as explosive powder hidden in letters, vulnerable people such as politicians or freight handlers can be protected by millimeter-wave radar.

SAMMI’s most striking feature is its ability to pick out the smallest differences in materials – differences that are invisible to x-rays. SAMMI can for example differentiate between the different fillings of chocolates, or between rubber composites that have similar or identical absorption qualities. Another advantage is that the scanner doesn’t employ ionizing radiation, which can damage health. It is also low-maintenance, not requiring the regular checks necessary with x-ray tubes.

But how does SAMMI work? Inside the system’s housing, there is both a transmitting and a receiving antenna on each of two opposing rotating plates. A conveyor belt transports the sample – perhaps a package whose contents are unknown – between the antennae, while these send electromagnetic waves in a high frequency of 78 GHz. Different areas of the sample absorb the signal to different degrees, leading the varying material composition across a sample to show up in distinguishable contrast. “Basically we examine the scanned objects for dissimilarities,” explains Essen. The content of the sample appears in real time on the scanner’s fold-out display. If the package contains a knife, even the grain of the handle is discernible. If the handle is hollow, the millimeter-wave sensor would show that, too. The device scans an area of 30 x 30 centimeters in just 60 seconds.

Our system can be operated without safety precautions or safety instructions, and since it weighs just 20 kilograms it’s eminently portable. It can also be adjusted to various measuring frequencies,” the scientist points out. In future, the researchers aim to “upgrade” the system for terahertz frequencies of 2 THz. “Then we’ll be in a position not just to detect different structures but also to establish which type of plastic a product is made from. That’s not possible at the moment,” says Dr. Essen.

At present, SAMMI is only suitable for spot checks. However, the FHR researchers are working on adapting the millimeter-wave sensor for industrial assembly lines for the fast, automatic inspection of goods. They envision mounting a line of sensors over the conveyor belt, so that in future products can be scanned at a speed of up to six meters per second.

Dr. Helmut Essen | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/monitoring-food-with-millimeter-waves.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>