Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When molecules leave tire tracks

18.02.2010
A new approach to optimizing molecular self-organization

Some classes of molecules are capable of arranging themselves in specific patterns on surfaces. This ability to self-organize is crucial for many technological applications, which are dependend on the assembly of ordered structures on surfaces.

However, it has so far been virtually impossible to predict or control the result of such processes. Now a group of researchers led by Dr. Bianca Hermann, a physicist from the Center for Nanoscience (CeNS) at LMU Munich, reports a significant breakthrough: By combining statistical physics and detailed simulations with images obtained by scanning tunnelling microscopy (STM), the team has been able to formulate a simple model that can predict the patterns observed. "With the help of the model, we can generate a wide variety of patterns that reproduce surprisingly well the arrangements observed experimentally", says Hermann.

"We want to extend this approach to other surface symmetries. Already now the areas of molecular electronics, sensor applications, surface catalysis and organic photovoltaics can profit from our model. Its ability to predict structures formed by self-organization allows optimization of molecular building blocks prior to synthesis." (Nano Letters online, 16 February 2010)

When "mother nature" does the engineering, molecules can self-organize into complex structures – a first step in the formation of membranes, cells and other molecular systems. The principle of self-organization, which allows very economical use of resources, is also exploited in the production of functionalized surfaces required in molecular electronics, sensor applications, catalysis and photovoltaic components. The idea of the manufacturing process is that molecular components are brought into contact with a substrate material, and then "magically" find their preferred positions in the desired molecular network. The starting components are selected to display specific structural and chemical features intended for the envisaged application. However, the optimization of the molecular adlayers depends largely on a trial-and-error approach, and is therefore complicated and time-consuming.

To develop the new molecular-interaction site model, Dr. Herrmann's group collaborated with Priv. Doz. Dr. Thomas Franosch und Professor Erwin Frey within the Cluster of Excellence "Nanosystems Initiative Munich" (NIM). The problem was tackled using an approach from statistical physics known as Monte Carlo method, which allows one to conduct a detailed computer simulation on the statistics of molecular interactions. The structural motifs so generated were compared with experimental high-resolution images of molecular patterns obtained by STM. Marta Balbás Gambra, a doctoral student, began each simulation with a mathematical representation of a collection of hundreds of randomly oriented particles of defined conformation. These schematic molecules were then perturbed by – computationally – adding energy, causing the population to adopt a new configuration.

Using this simulation strategy, one can generate a greater variety of patterns than are found naturally, and many of these corresponded closely to the real molecular patterns revealed by STM. "In one case we actually predicted a pattern that was only later verified with STM", reports doctoral student Carsten Rohr. According to the laws of thermodynamics, physical systems tend to adopt the state with the most favourable (i.e. lowest) energy. Experimental tests showed that different molecular configurations interconvert until an arrangement predominates that is reminiscent of tyre tracks. And indeed, the Monte Carlo approach had predicted that this arrangement corresponds to the state with the lowest energy.

"In the end, we were able to show that the molecular geometry and a few salient features encode the structural motifs observed", explains theorist Franosch. "We plan to extend the approach to other types of surface symmetries, but the model already provides an important theoretical tool, because it helps us to forecast the type of surface pattern that a given functional molecule will form. This means that the design of molecules can be optimized during the synthetic phase, so as to obtain surfaces with the desired characteristics", says Hermann. The physicists in the group, who come from different scientific backgrounds and were able to pool their expertise for this project, envisage multiple potential applications for their model in molecular electronics, sensor technology, catalysis and photovoltaics. Further possibilities include its use for predicting the results of other types of molecular interactions also on partially patterned substrates.

Publication: „Molecular Jigsaw: Pattern Diversity Encoded by Elementary Geometrical Features",
C. Rohr, M. Balbás Gambra, K. Gruber, E. C. Constable, E. Frey, T. Franosch, and B. A. Hermann
Nano Letters online, 16 February 2009
DOI: 10.1021/nl903225j
Contact:
Dr. Bianca Hermann
Cluster of Excellence "Nanosystems Initiative Munich" (NIM) and Center for NanoScience (CeNS), LMU Munich; Walther Meissner Institute of the Bavarian Academy of Sciences and Humanities
Phone: +49 (0) 89 / 289 14258
Fax: +49 (0) 89 / 289 14206
E-mail: b.hermann@cens.de

Dr. Bianca Hermann | EurekAlert!
Further information:
http://www.wmi.badw-muenchen.de/spm/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>