Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Molecule “Scanner”

06.08.2013
Pitt invents the world’s smallest terahertz detector

Molecules could soon be “scanned” in a fashion similar to imaging screenings at airports, thanks to a detector developed by University of Pittsburgh physicists.


CAPTION: An artist’s rendering of molecules being “screened” by a nanoscale terahertz spectrometer

The detector, featured in a recent issue of Nano Letters, may have the ability to chemically identify single molecules using terahertz radiation—a range of light far below what the eye can detect.

“Our invention allows lines to be ‘written’ and ‘erased’ much in the manner that an Etch A Sketch® toy operates,” said study coauthor Jeremy Levy, professor in the Department of Physics and Astronomy within the Kenneth P. Dietrich School of Arts and Sciences. “The only difference is that the smallest feature is a trillion times smaller than the children’s toy, able to create conductive lines as narrow as two nanometers.”

Terahertz radiation refers to a color range far beyond what the eye can see and is useful for identifying specific types of molecules. This type of radiation is generated and detected with the help of an ultrafast laser, a strobe light that turns on and off in less than 30 femtoseconds (a unit of time equal to 10-15-of a second). Terahertz imaging is commonly used in airport scanners, but has been hard to apply to individual molecules due to a lack of sources and detectors at those scales.

“We believe it would be possible to isolate and probe single nanostructures and even molecules—performing ‘terahertz spectroscopy’ at the ultimate level of a single molecule,” said Levy. “Such resolution will be unprecedented and could be useful for fundamental studies as well as more practical applications.”

Levy and his team are currently performing spectroscopy of molecules and nanoparticles. In the future, they hope to work with a C60, a well-known molecule within the terahertz spectrum.

The oxide materials used for this research were provided by study coauthor Chang-Beom Eom, Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor at the University of Wisconsin-Madison College of Engineering.

Additional collaborators include, from Pitt’s Department of Physics and Astronomy, Research Assistant Professor Patrick Irvin, Yanjun Ma (A&S ’13G), and Mengchen Huang (A&S ’13). Also involved was the University of Wisconsin-Madison’s Sangwoo Ryu and Chung Wung Bark.

The paper, “Broadband Terahertz Generation and Detection at 10 nm Scale,” was published in Nano Letters, a publication produced by the American Chemical Society. The research was supported by grants from the United States Air Force Office of Scientific Research and the National Science Foundation.

Contact:

B. Rose Huber
rhuber@pitt.edu
412-624-4356
Cell: 412-328-6008

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>