Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular typesetting -- proofreading without a proofreader

25.06.2009
Researchers at the Universities of Leeds and Bristol (UK) have developed a model of how errors are corrected whilst proteins are being built.

Ensuring that proteins are built correctly is essential to the proper functioning of our bodies, but the 'quality assurance' mechanisms that take place during this manufacturing process are not fully understood.

"Scientists have been puzzled as to how this process makes so few mistakes", says Dr Netta Cohen, Reader at the University of Leeds' School of Computing.

To create a protein, the first step involves copying the relevant gene on our DNA onto a template, called RNA. This copying process is carried out by molecular machines called RNA polymerases.

"The RNA polymerase acts like an old fashioned newsprint typesetter, constructing newsprint by assembling letters one at a time. Similarly, RNA polymerase constructs RNA by reading the DNA and adding new letters to the RNA one at a time," explains Dr Cohen.

There's no way for the RNA polymerase to ensure that the correct letter is always incorporated at the right spot. "Statistically, we would expect to see a hundred-fold more errors than we actually do, so we know that some error correction must be happening. Otherwise, many more proteins in our bodies would malfunction," says Dr Cohen.

Biological experiments have shown that the RNA polymerase slides both forwards and backwards along the RNA sequence it has created. What's more, it has miniature scissors that can then cut out the last few letters of RNA.

So how are errors corrected? Intelligent typesetters would remove the last few letters when they spot an error. The new model suggests how the backward sliding stalls when passing an error, so wrong letters can be snipped off and copying can resume.

"The mechanism we've modelled has only recently been shown to be implicated in proofreading," says Dr Cohen. "In fact, there is more than one identified mechanism for ensuring that genetic code is copied correctly. The challenge now is to find out – through a combination of experimental biology and modelling – which mechanism is dominant."

Dr. Netta Cohen | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>